Dear City of Boise Planning & Zoning Commission and City Council:

St. Luke's has been caring for the Boise community since 1902. In its more than 100-year history, St. Luke's has evolved in order to meet the changing needs of the people we serve. As a community-owned asset, our mission is to improve the health of the people in our region and our vision is to transform health care by aligning with physicians and other providers to deliver integrated, seamless, and patient-centered quality care across all St. Luke's settings.

As an organization, our evolution must continue. Health care is changing and the needs and expectations of patients are becoming more personalized. Our community is growing, its residents are aging, and living with more chronic illnesses. All of these factors point to more people needing health services in the future and to St. Luke's need to develop, in new patient-centered ways, to meet this community need.

The information contained in the document that follows provides the background, details, and context for the development St. Luke's is proposing for its downtown Boise facility. The plan has been collaboratively developed with our partners, including our neighbors, public agencies, community business leaders, boards and steering committees (for a full list, see “Acknowledgments & Credits”). The plan is evidence-based, considers development planning to the year of 2030, and respects the unique attributes of the neighborhood setting where the hospital currently resides.

We are inspired by the collaboration that has supported the development of this Master Plan. We believe it is a solid road map for the future development of healthcare services in this region and look forward to the opportunity to review and discuss the details as we move through the approval process.

Mike Mooney
Chairman
St. Luke’s West Region Board of Directors

Chris Roth
Chief Operating Officer
St. Luke’s Health System

Kathy Moore
Chief Executive Officer
St. Luke’s West Region
Acknowledgements & Credits:

St. Luke’s Health System and St. Luke’s Boise Medical Center extend a sincere thanks to all involved in the development of this facility master plan for their input, insight and expertise.

A special thanks to St. Luke’s West Region Board of Directors for their vision, leadership and perseverance:

Mike Mooney, Chairman
A. J. Balukoff
Jim Everett
Carol Feider
Dean Hovdey

Thomas Huntington, MD
George Iliff
John Jackson
Joy Keasley
Kathy Moore, CEO
Leslie Nona, MD
Catherine Reynolds, MD
Bill Ringert
Ron Salt
Bishop Brian Thom
Brad Wiskirchen

Thanks to the citizens of Boise, neighbors, and public agencies, including:

East End Neighborhood Association
North End Neighborhood Association
Downtown Boise Neighborhood Association
The Bannock Arms
Boise Independent School District
Elks Rehab Hospital
Boise VA Medical Center
US Geological Survey
Bureau of Reclamation
Valley Regional Transit
Capital City Development Corporation
The City of Boise
Ada County Highway District

St. Luke’s Team of Consultants:
Architectural Nexus
CH2M Hill
DaviesMoore
Engineering Incorporated
Hummel Architects PLLC
Platform Architecture Design
South Landscape Architecture
Spink Butler, LLP
Squyres Strategic Communications
The Land Group
Walker Parking Consultants
Wipfli CPAs & Consultants
ZGF Architects LLP
1.0 EXECUTIVE SUMMARY

“A hospital is a living organism, made of many different functions, but all these must be in due proportion and relation to each other, and to the environment, to produce the desired general results. The stream of life which runs through it is incessantly changing; patients and nurses and doctors come and go, today it has to do with the results of an epidemic; tomorrow with those of an explosion or fire; the reputation of its physicians or surgeons attracts those suffering from a particular form of disease, and as the one changes so do the others. Its work is never done; its equipment is never complete; it is always in need of new means of diagnosis, of new instruments and medicines; it is to try all things and hold fast to that which is good.”

John Shaw Billings
Designer, Johns Hopkins Hospital
May 7, 1889

St. Luke’s Health System’s (“St Luke’s”) application to Boise City (“Boise” or the “City”) was made in October, 2014 requesting that the City adopt the Master Plan for St. Luke’s Boise, Idaho Facility (“Master Plan”) as consistent with and under the umbrella of Blueprint Boise (“Blueprint Boise”).

Prior to application, St. Luke’s and its team of consultants met periodically with the City’s Planning and Development Services Staff (“Staff”) for its professional guidance on how best to prepare the application. Blueprint Boise was consulted throughout the preparation of the Master Plan application. Stakeholder and neighborhood engagement began in October 2013, a full year prior to submitting the application to the City, and input was integrated with and considered in the development of the Master Plan. To be sure, master planning for health care in the 21st century is a complicated task, made more so in an urban, infill setting. Where many major hospitals have multiples of tens of acres to work with, St. Luke’s Boise facility has about half that. Yet, Blueprint Boise encourages more compact patterns of growth, and reminds us that responsible growth is taking advantage of the opportunities for infill and redevelopment in established parts of the City.

Through this proposed Master Plan, St. Luke’s intends to guide its continuing 100+ year tradition to improve the health care for our community, and to implement other Blueprint Boise themes such as improving connectivity, and improving the economy of the community. Approval of the application is a choice for access to greater health care and a choice for access to enhanced and safer public connectivity. Implementing all the themes of Blueprint Boise’s plan for our mutual future improves our collective Quality of Life—a grand goal, to be sure—a goal that we can feel closer to achieving when we find we are all equitably sharing the benefits and burdens of our increasingly urban lives.

The Master Plan represents St. Luke’s blueprint for the coming years. The design and engineering of the buildings and the transportation system are, of course, not finished with the adoption of the Master Plan. The built environment will go through both informal and formal public processes before final approvals. We look forward to our continuing partnership with the City, ACHD and our neighbors to share and include our visions for our community and the St. Luke’s campus.

This comprehensive document summarizes the Master Plan’s compliance with Blueprint Boise and also addresses the many questions and comments received by both St. Luke’s and the City. Combined with the record as a whole, the City Council has at its disposal the factual information to support its legal conclusion that the Master Plan:

(a) Is required for the public convenience or necessity, or for the general welfare of the community;

(b) Is necessary to address changes in conditions within the community that have occurred since the Boise City Comprehensive Plan was adopted or is necessary to correct one or more goal, objective, or policy that exist in the plan;

(c) Is in compliance with and will further the goals, objectives, and policies of the Boise City Comprehensive Plan;

(d) Will not create inconsistencies between the goals, objectives, and policies of the Boise City Comprehensive Plan;
St. Luke's is committed to serving Boise, as well as the broader region's health care needs. Growth throughout our community is expected to increase, as much as 46 percent, or nearly 200,000 people, by 2030.1 An aging population, increases in obesity and chronic health conditions, population growth and the need to modernize and upgrade aging infrastructure all drive the need for St. Luke's to transform its Boise hospital campus to continue to deliver innovative and exceptional care to patients for decades to come.

St. Luke's has proven to be a significant stimulus for the local economy.

Based on an independent 2012 study by the University of Idaho the economic impact of St. Luke's is positive in that every dollar spent by St. Luke's or employee hired the local economy also grows. For example in 2012 the Boise facility employed approximately 5,600 employees and had operating expenses of approximately $675,000,000 which provided an estimated total economic benefit to the local economy in the amount of $1.4 billion in revenue, and an estimated 15,600 jobs to the area.2 Since 2012 these numbers have increased. It is envisioned that increasing job opportunities in this distinctive area of Boise will increase opportunities for public transportation and non-motorized vehicle opportunities as well as support the burgeoning Downtown Boise housing market.3 The impact to the Boise economy would be significant.

Just as Blueprint Boise strives for balance to achieve sustainability, the theme of the Master Plan is the balance of specialized hospital and health care planning with land use planning that integrates the surrounding community, especially through expanded, safer multimodal connectivity. St. Luke's, recognizing the special – and spatial – context within which its health care facility resides, engaged a wide range of professionals to develop its Master Plan. Their task was to meet the hospital’s needs and expand public infrastructure – especially bicycle and pedestrian facilities – in and around the Near East End where St. Luke's campus resides.

The Boise community’s consensus, outlined in Blueprint Boise, is that being a “connected community” includes multimodal transportation objectives and opportunities.4 Like the City as a whole, St. Luke’s, strives for enhanced connectivity to provide safe and efficient facilities for pedestrians, bicyclists and motorists – all in an effort for long-term sustainability.5 That commitment is not mere lip service. St. Luke’s will always be a destination drawing many travelers. St. Luke’s is also located at a pivotal point where travelers will pass through on their way to Southeast Boise, Downtown, Fort Boise, the North End and beyond.

To withstand scrutiny, a request for a change to the transportation facilities must provide offsetting mitigation that provides a legitimate public benefit to the traveling public. It is true that the traveling public would not have the connectivity provided by a block of Jefferson – a block designed with two lanes and parking on both sides. The facts presented with the facts presented with the application, including the transportation studies, and this document show that the connectivity the traveling public seeks in return for the block closure ensure there is no undue burden on transportation facilities.

1.1 INTRODUCTION

St. Luke’s mission and goal for its entire health system is the foundation on which St. Luke's based the master planning process for its Boise facility:

Mission: To improve the health of people in our region.

Goal: To build better health by delivering personalized, innovative and exceptional care.

1 John Church, Idaho Economics.
3 The expansion of St. Luke’s Boise facility promotes the economic growth of Blueprint Boise that urge the City to maintain its current economic position and identify opportunities that strengthen the economic base of the community. Blueprint Boise promotes continued focus on Downtown for economic development, which is recognized as a unique area of the community whose long-term health and viability are critical to the economic success of the community as a whole.
4 Blueprint Boise's goals and policies that promote a physically connected community are based on principles of an integrated approach to land use and transportation planning and an expansion of the City’s non-motorized transportation options. See, Blueprint Boise, Page 2-45.
5 1 (St. Luke’s Employee Transportation Alternatives ("ETA") program) was created to delineate traffic and parking concerns; and address quality issues in the community. The program includes:

- St. Luke’s contracts with ValleyRide so that an employee ID badge is the equivalent of a free bus pass to anywhere in the ValleyRide system.
- Participants in the ETA program are eligible for the Guaranteed Ride Home program, which provides for free taxi service in the event of an emergency or schedule change.
- Employees that carpool (i.e., two or more employees in one car) are eligible for a discounted parking rate on campus.
- Employees that carpool (i.e., two or more employees in one car) are eligible for a discounted parking rate on campus.
- Employees that carpool (i.e., two or more employees in one car) are eligible for a discounted parking rate on campus.
- Employees that carpool (i.e., two or more employees in one car) are eligible for a discounted parking rate on campus.
approaches to address future expansion. Having reached Avenue B, the building cannot continue to grow in emergent conditions to see the value of seconds in success rates. Another can mean the difference between degrees of successful and progressively increasing in size to accommodate the needs decades, east. Each new building and addition touching the last, providing needed care to hundreds of people a day. The flagship tertiary care center is located in the region. Its downtown location has grown from a single residence dedicated care for its community, and of equal importance, the community it serves. The St. Luke’s Health System is the largest and only Idaho owned not-for-profit healthcare system. Its service area stretches from eastern Oregon to eastern Idaho and from northern Nevada to central and southern Idaho, numerous clinics and rural physician practices, and partnerships with healthcare providers all over Idaho and surrounding service areas. It is committed and invested in each community it serves. The flagship tertiary care center is located in Boise, where the most acute cases from the service area are referred to the most specialized care.

St. Luke’s Boise facility has existed for more than a century, and over that time has witnessed incredible population growth, the Great Depression, World War II, and numerous military conflicts, the AIDS epidemic, and the proliferation of cancer diagnosis and treatment. It has struggled and prospered, all the while providing dedicated care for its community, and of equal importance, the region. Its downtown location has grown from a single residence converted to a hospital accommodating six patients, to a hospital with more than 380 inpatient beds and a collection of buildings providing needed care to hundreds of people a day.

The hospital began at 1st Street and expanded through the decades, east. Each new building and addition touching the last, and progressively increasing in size to accommodate the needs of the time. This pattern demonstrates careful planning and fiscal responsibility, as well as the importance of maintaining connectivity to current departments within the hospital, limiting disruptions to current operations. Patient experience and safety are priorities, and one another can mean the difference between degrees of successful patient outcomes, and, in more extreme instances, life and death. One only needs to look at the statistics the healthcare industry monitors in emergent conditions to see the value of seconds in success rates.

Having reached Avenue B, the building cannot continue to grow without great complication, compromise and the uncertainty of success. Therefore, this plan explores alternate approaches to address future expansion.

In this plan, great effort has been taken by St. Luke's Administration, community leaders, stakeholders including the City of Boise and Ada County Highway District, as well as St. Luke’s team of consultants, to test and explore available options for the next major hospital development and supporting elements. The consultant team is made up of regional and national experts in their respective fields offering their insight and experiences to the benefit of St. Luke’s and the community. A complete list of contributors to this document can be found in Appendix A. All contributions were solicited and compiled to organize the index. This document is the culmination of a decade of careful assessment, evaluation and reevaluation in reaction to trends and policy. The timing is right and the importance cannot be understated.

1.2 PURPOSE OF PLAN

The goals and objectives of any facility master plan should identify the needs and vision of the organization, then strive to provide a clear, albeit flexible, roadmap for coordinated development; a path to modernizing existing facilities and systems; and evolving facility and transportation planning to replace structures that are nearing the end of their useful lives. Additionally, healthcare facility planning requires imperatives including, most importantly, patient safety and evidence-based design. The plan must be adaptable to offer opportunity to future needs.

By its nature, health care is dynamic. Inherently, challenges from the insurance industry, government agencies and policies, treatment and care delivery protocol, ever-improving technologies, and the evolution of illness make the planning of healthcare facilities an ongoing task. Spaces and infrastructure must be planned to be as flexible as possible and anticipate future needs and trends to ensure a maximum usable life. So, too, must be the hospital facility.

This master plan projects needs and planning to the year 2030; any further projections become unreliable and any lesser becomes too limiting to be useful. The document will serve as a living outline for future development and as such will be periodically updated, presented and recorded with the agencies having jurisdictional interest and approval. It has been discussed the plan would be revisited at a minimum of every 3-5 years depending on need and activity. The master plan is representative of a full build-out of the facility; however, based on changing conditions and market need, individual buildings may be phased or scaled back accordingly.

1.3 PLANNING CONSIDERATIONS

The planning framework considers first and foremost the needs of the hospital and its patients. Health care is, at the end of the day, the charge of any healthcare organization. Secondly, urban and transportation planning objectives have been considered to the extent they do not conflict negatively with the first priority. Thirdly, the charge of any healthcare organization.

The planning framework considers first and foremost the needs of the hospital and its patients. Health care is, at the end of the day, the charge of any healthcare organization. Secondly, urban and transportation planning objectives have been considered to the extent they do not conflict negatively with the first priority. Thirdly, the charge of any healthcare organization.

The goals and objectives of any facility master plan should identify the needs and vision of the organization, then strive to provide a clear, albeit flexible, roadmap for coordinated development; a path to modernizing existing facilities and systems; and evolving facility and transportation planning to replace structures that are nearing the end of their useful lives. Additionally, healthcare facility planning requires imperatives including, most importantly, patient safety and evidence-based design. The plan must be adaptable to offer opportunity to future needs.

By its nature, health care is dynamic. Inherently, challenges from the insurance industry, government agencies and policies, treatment and care delivery protocol, ever-improving technologies, and the evolution of illness make the planning of healthcare facilities an ongoing task. Spaces and infrastructure must be planned to be as flexible as possible and anticipate future needs and trends to ensure a maximum usable life. So, too, must be the hospital facility.

This master plan projects needs and planning to the year 2030; any further projections become unreliable and any lesser becomes too limiting to be useful. The document will serve as a living outline for future development and as such will be periodically updated, presented and recorded with the agencies having jurisdictional interest and approval. It has been discussed the plan would be revisited at a minimum of every 3-5 years depending on need and activity. The master plan is representative of a full build-out of the facility; however, based on changing conditions and market need, individual buildings may be phased or scaled back accordingly.

The goals and objectives of any facility master plan should identify the needs and vision of the organization, then strive to provide a clear, albeit flexible, roadmap for coordinated development; a path to modernizing existing facilities and systems; and evolving facility and transportation planning to replace structures that are nearing the end of their useful lives. Additionally, healthcare facility planning requires imperatives including, most importantly, patient safety and evidence-based design. The plan must be adaptable to offer opportunity to future needs.

By its nature, health care is dynamic. Inherently, challenges from the insurance industry, government agencies and policies, treatment and care delivery protocol, ever-improving technologies, and the evolution of illness make the planning of healthcare facilities an ongoing task. Spaces and infrastructure must be planned to be as flexible as possible and anticipate future needs and trends to ensure a maximum usable life. So, too, must be the hospital facility.

This master plan projects needs and planning to the year 2030; any further projections become unreliable and any lesser becomes too limiting to be useful. The document will serve as a living outline for future development and as such will be periodically updated, presented and recorded with the agencies having jurisdictional interest and approval. It has been discussed the plan would be revisited at a minimum of every 3-5 years depending on need and activity. The master plan is representative of a full build-out of the facility; however, based on changing conditions and market need, individual buildings may be phased or scaled back accordingly.

The goals and objectives of any facility master plan should identify the needs and vision of the organization, then strive to provide a clear, albeit flexible, roadmap for coordinated development; a path to modernizing existing facilities and systems; and evolving facility and transportation planning to replace structures that are nearing the end of their useful lives. Additionally, healthcare facility planning requires imperatives including, most importantly, patient safety and evidence-based design. The plan must be adaptable to offer opportunity to future needs.

By its nature, health care is dynamic. Inherently, challenges from the insurance industry, government agencies and policies, treatment and care delivery protocol, ever-improving technologies, and the evolution of illness make the planning of healthcare facilities an ongoing task. Spaces and infrastructure must be planned to be as flexible as possible and anticipate future needs and trends to ensure a maximum usable life. So, too, must be the hospital facility.
Boise. Without explanation, we are just plain incompatible with Blueprint serious exploration of opportunities to improve connectivity; or that, lack of community engagement by St. Luke’s; or there has been no from EENA summarily tell the Commission that there has been a difficult for us, after so many outreach meetings and our continuing
multimodal transportation improvements that its nearest neighbors St. Luke’s has taken great attention – even pride – in designing
walking to work (often at St. Luke’s), shopping or schools.
and the general desire to live compactly to facilitate riding bikes or
future roadway improvements enhance
Remove of historically significant structures and boundaries for
meetings of the hospital, the neighborhood and Boise City. Issues
recommendations of the neighborhood plan. Other issues
neighborhood, Boise City and the Treasure Valley. St. Luke’s expansion
approve of any single goal and policy of Blueprint Boise. Which is exactly why
balanced approach to decision-making should be employed in the
an application where the Council can find complete compliance with
must instead look to the particular circumstances, make safer and more attractive for cyclists of all abilities.
Safe and efficient transportation of the City’s motorists, bicyclists
Principles of the Original Neighborhood Concepts, J. of Urban Morphology, 6(1), 2002, pp. 21-32. Although developed to promote pedestrian activity and social interaction,
help improve the City’s multimodal system. Kristen Armstrong – Olympic Gold Medal cyclist and St. Luke’s Community Health Ambassador; has shared her wealth of knowledge with the multimodal facilities designers. She has been
public pedestrian ways protected by easements in place of the
superblocks, which it is not, today many urban planning professionals are re-looking at
levels) with a keen interest to help improve the City’s multimodal system.
Social interaction, recreation, and community events.
permanently “a superblock” is an urban planning technique developed in the 1920s and used through the mid-20th century to plan large (population of 3,000
people and many blocks), mixed-use neighborhoods. Sex, e.g., Patrice, Urban Design Principles of the Original Neighborhood Concepts, J. of Urban Morphology, 6(1), 2002, pp. 21-32. Although developed to promote pedestrian activity and social interaction,
broader is often desired; however, this is not what is proposed by St. Luke’s. Even if one considered the hospital expansion a monocentric block, planners today may still be re-looking at superblocks as a new model of urban mobility – probably there is the establishment of multimodal transportation. This is what is proposed by St. Luke’s.

St. Luke’s (sic) Hospital provides important healthcare to the East End, Boise City and the Treasure Valley. St. Luke’s expansion plans should, at a minimum, be consistent with the goals and
recommendations of the neighborhood plan. Other issues that emerge during expansion should be resolved at periodic meetings of the hospital, the neighborhood and Boise City issues of concern, including displacement and release of open spaces, traffic circulation, parking, street closures, visual qualities, removal of historically significant structures and boundaries for expansion.
St. Luke’s efforts have been directed toward the design of a multimodal system that fulfills the goals and policies of Blueprint Boise, including the goals and policies for our East End neighborhood. For example:

Goal NE-C2: Ensure future roadway improvements enhance the safety and comfort of pedestrians.

Policy NE-C2.1: Sidewalks: Require sidewalks to be separated from roadway for the safety and comfort of pedestrians.

Policy NE-CCN2.2: St. Luke’s Regional Medical Center: Develop the St. Luke’s Regional Medical Center area in accordance with the St. Luke’s Campus Master Plan.

Policy NE-CCN 2.3: Medical Office/Support Services: Permit private medical offices and support services between Avenues B and C and East Jefferson that are comparable to the block and scale of existing structures. Limit scale and bulk of new structures north of East Jefferson to scale and bulk comparable to the adjacent, existing residential neighborhood.

St. Luke’s, with its emphasis on providing state-of-the-art health care services and promoting the health and wellness of Boise citizens through active lifestyles, has, as Blueprint Boise points out, a symbiotic relationship with the East End Neighborhood, with its emphasis on active lifestyles, easy access to outdoor recreational opportunities and the general desire to live compactly to facilitate riding bikes or walking to work (often at St. Luke’s), shopping or schools.

St. Luke’s has taken great attention – even pride – in designing multimodal transportation improvements that its nearest neighbors could, themselves, be proud to point out as a community benefit and an asset to the East End Neighborhood. So, without a doubt, it has been difficult for us, after so many outreach meetings and our continuing desire to engage in design give-and-take, to have representatives from EENA tell the Commission that there has been a lack of community engagement by St. Luke’s; or there has been no serious exploration of opportunities to improve connectivity; or that, without exploration, we are just plain incompatible with Blueprint Boise.

The one policy of Blueprint Boise that seems to capture the ire of some of our neighbors is a policy applicable to the Downtown planning area, and, arguably, may not apply to St. Luke’s.

Policy DT-C 2.1: Block Pattern
(a) Retain a high level of connectivity in Downtown by maintaining the traditional street grid and block pattern (240 feet by 300 feet).

(b) Where superblocks exist, work with property owners and developers when redevelopment is proposed to re-establish the street grid and create blocks that approximate the traditional block size. If it is not feasible to re-establish streets, obtain public pedesian (sic) pathways and cross-serveaisements in place of the street grid so development areas approximate the traditional block size.

(c) Avoid development of meagastuctures on superblocks that create either real or perceived barriers to connectivity.

St. Luke’s appreciates the concept of a grid system to efficiently and safely disperse traffic – after all, St. Luke’s employees and emergency vehicles must traverse the City’s streets to reach the facility. No doubt the Council, like the Commission before it, will have some individuals tell it that the singular issue involving closure of a block of Jefferson Street allowing St. Luke’s to build a large modern hospital is so completely contrary to Blueprint Boise that merely asking for the closure of a block of a public street calls for outright rejection of the Master Plan.

However, there are competing goals to consider – the City’s desire for provision of transit and road networks and maintaining the safe and efficient transportation of the City’s motorists, bicyclists and pedestrians. The City must not allow these goals to be mutually exclusive and must instead look to the particular circumstances, including the TIS and the proposed improvements to the public infrastructure, to determine whether connectivity is served by the change.15

The Council knows from its experience that there is perhaps never an application where the Council can find complete compliance with every single goal and policy of Blueprint Boise. Why is exactly why Blueprint Boise reminds the Council, as the decision-maker, that a balanced approach to decision-making should be employed in the day-to-day application of this Comprehensive Plan.” Blueprint Boise continues: “Careful consideration should be given to the extent to which each decision relates to one or more of the seven themes of Blueprint Boise. Generally, decisions should be supportive of the overall philosophy embodied in each theme.16 We believe firmly that St. Luke’s Master Plan, inspired and guided by Blueprint Boise, supports the overall philosophy of the City.20

15 As a member of the East End Neighborhood, and located in the Near East End, St. Luke’s is engaged with the Master Plan process for a full year before submitting its Master Plan application to the City, which may be unperceived in the City. St. Luke’s listened to its neighbors and incorporated suggestions into the proposed Master Plan. Some comments, suggestions and their incorporation into the Master Plan are also listed below:

• The East End Neighborhood Association expressed concern about the lack of other neighborhood services with St. Luke’s option to purchase the mall as 111 Broadway and seeks an affordable housing component.

• Neighbors expressed concern regarding employees parking on neighborhood streets. St. Luke’s included in the Master Plan additional parking for counter employee parking on neighborhood streets. In the meantime, St. Luke’s is raising awareness of this concern with its employees and the City’s Parking Team.

• Neighbors expressed concern regarding the lack of dedicated bike lanes on Avenue B. The bicycle and pedestrian facilities now proposed bring a greater emphasis to the multimodal system and go beyond that may be apparent.

• Multi-modal transportation system amenities that have been incorporated into the Master Plan include:

• the length of the cycle track has expanded. It was originally proposed to start on Fort Street from 2nd and State Streets, around Avenue B and down to Warm Springs Avenue, it now completely wraps around the campus area.

• Bike lanes were added to complement the cycle track to accommodate commuters and cyclists not interested in a cycle track.

• Bike lanes were extended on Fort Street; they had originally started just on Avenue B.

• A pedestrian crossing was added on Bannock Street and Avenue B. It is not known if this is still under design.

• A micro path was added to move cyclists from the BSU/Broadway area through the St. Luke’s parking garage area south of Main Street into the St. Luke’s campus area.

• Reserve Street is shown as modified to include a roundabout.

• Sharrows and other cycling facilities are shown through the St. Luke’s campus area.

• A workshop has been held to explore increasing transportation functionality for pedestrians and cyclists, through the Bannock axis. Several opportunities have been identified.

• Although St. Luke’s is not required to preserve any of the structures it proposes to move, representatives of the National Trust for Historic Preservation, Preservation Idaho and the Idaho Heritage Preservation Office, the Idaho Heritage Trust and the City’s Arts & History Commission have asked St. Luke’s to consider preserving four to six structures that are considered significant by preservationists as historically interesting. In this effort, St. Luke’s has agreed to preserve with public input, the following four to six structures. St. Luke’s is committed to continuing this collaborative effort.

16 The EENPG was adopted by the City in 1988 and revised in 1999 to make the neighborhood plan consistent with the City’s Comprehensive Plan. The Background Report has been retained as a historical record. The Background Report, while providing a wealth of background information, is not an official part of the Neighborhood plan.

17 The transportation engineers and designers are, in the main, avid cyclists (at all levels) with a keen interest to help improve the City’s multimodal system.

18 The transportation engineers and designers are, in the main, avid cyclists (at all levels) with a keen interest to help improve the City’s multimodal system.

19 The EENPG was adopted by the City in 1988 and revised in 1999 to make the neighborhood plan consistent with the City’s Comprehensive Plan. The Background Report has been retained as a historical record. The Background Report, while providing a wealth of background information, is not an official part of the Neighborhood plan.

20 The transportation engineers and designers are, in the main, avid cyclists (at all levels) with a keen interest to help improve the City’s multimodal system.

21 The EENPG was adopted by the City in 1988 and revised in 1999 to make the neighborhood plan consistent with the City’s Comprehensive Plan. The Background Report has been retained as a historical record. The Background Report, while providing a wealth of background information, is not an official part of the Neighborhood plan.

22 The EENPG was adopted by the City in 1988 and revised in 1999 to make the neighborhood plan consistent with the City’s Comprehensive Plan. The Background Report has been retained as a historical record. The Background Report, while providing a wealth of background information, is not an official part of the Neighborhood plan.

23 The EENPG was adopted by the City in 1988 and revised in 1999 to make the neighborhood plan consistent with the City’s Comprehensive Plan. The Background Report has been retained as a historical record. The Background Report, while providing a wealth of background information, is not an official part of the Neighborhood plan.
1.4 COMMITMENT TO COMMUNITY

It is important to acknowledge St. Luke’s commitment to the community and its betterment. Since 1902, St. Luke’s Boise has taken care of patients, both from around the corner and from around the state. It strives to be a responsible steward of community development and the environment, and a healthy lifestyle. As an example, St. Luke’s offers a nationally recognized robotized employed transportation alternative program incentivizing employees who bike, walk or utilize the public transit systems. Participants receive gift certificates good toward equipment, tune-ups, footwear, and transit passes. It is St. Luke’s intention to continue to support consideration of new public transportation systems as they develop.

Essential to community vibrancy and enhancing quality of life are protecting open space and creating culture. With this in mind areas for installation of public art and creation of public outdoor space have been integrated in this plan. More information is included in the Recommended Streetscape section.

St. Luke’s has also received environment-focused awards from Idaho Power for reduced energy consumption, construction waste recycling awards from the John William Jackson Fund, and was recipient of the 2011 YERP Environmental Stewardship Award and 2008 Environmental Stewardship Award by City of Boise. Several other awards of sustainable design and operation practices in its existing and new facilities. The initial phases of this master plan carry a significant financial investment not only to St. Luke’s downtown facilities, but over the next decades will be estimated several hundred million dollars of rollover economic benefit and job growth will be provided to the larger community.

Further, there are many challenges and safety concerns related to the transportation system near St. Luke’s and the East End Neighborhood. St. Luke’s is deeply committed to participating with ACHD, the City of Boise, and the citizens of Boise to improve transportation and connectivity at all levels around its downtown facility regardless of whether or not the issue is directly caused by St. Luke’s development plans. As an example of this commitment to the community, St. Luke’s has launched a robust outreach campaign with the intent of keeping interested parties updated on developments specific to its master plan. The engagement began well over a year ago and has encompassed over forty separate meetings with agencies, organizations and neighbors. St. Luke’s did not only present information on the plan, but the attendees were able to provide feedback and insights, to further shape and focus this document. The outreach included presentations to the public approval process. In addition, St. Luke’s website, www.stlukesonline.org, provides updated plan details and links to relevant resources.

In the plan that follows, there is an assessment of the existing transportation conditions, identifying areas of concern and proposing solutions for broader improvement potential. The plan includes four levels of transportation: transit, automobiles, bicycles, and pedestrians.

In the plan that follows, there is an assessment of the existing transportation conditions, identifying areas of concern and proposing solutions for broader improvement potential. The plan includes four levels of transportation: transit, automobiles, bicycles, and pedestrians.

Great care has been given in any of the offered solutions to address safety, performance, and comfort. It is St. Luke’s intent to enhance its downtown facility with improvements, encouraging use by the public and improving satisfaction with each system.

1.5 FREQUENTLY ASKED QUESTIONS

Q: What is St. Luke's commitment to the community?

St. Luke’s has been invested in, and investing in, this neighborhood, the East End, since December 1, 1902. St. Luke’s embraces an ongoing transformation and transformation mission to provide real and tangible benefits for the entire community. St. Luke’s 2014 Community Benefit Report filed with Ada County is attached as Appendix E.

During the Master Plan review process, some individuals have written to the City to oppose the Master Plan based on their opinion that St. Luke’s is just a big corporation asking for the closure of a block of Jefferson as a subsidy from Boise residents. We hope that our presentation to the Council, and the record as a whole, conveys to the City and the public that, yes, with the closure of a block of Jefferson, St. Luke’s is asking that the public invest in its health care and connectivity. We also hope that the public recognizes that, for its return, St. Luke’s is investing in the public infrastructure substantially by providing enhanced, safer connectivity in the East End, St. Luke’s campus, Fort Boise and Downtown areas.

Q: Was the public included in the evaluation that resulted in the North Alternative being selected?

A major tenet of modern, smart growth urban land use planning is that community and stakeholder collaboration is encouraged in development decisions. Appendix A contains public involvement meetings held by the City and open house presentations used to involve the local governments, neighbors, cycling and historic preservation organizations, and neighborhood associations in assisting to refine the Master Plan. St. Luke’s has and continues to listen to its neighbors and other community stakeholders and has incorporated suggestions into the proposed Master Plan.

The general public was not involved with the internal health care planning that took St. Luke’s and its very specialized consultants several years before a proposed plan based on the North Alternative could even be presented to the general public for input.

That is to be expected because hospital planning is the epitome of form follows function. Patient care and safety, along with the functionality of a hospital, is a highly technical field made more complex with regulatory requirements. Academic treatises and hundreds of professional articles are written on the subject each year. Health care facility planning differs significantly from other campuses and traditional master planning such as the Corg blocks, such as city administration building, law library, architecture school, etc. Health care facility planning is unique. Health care planning is analogous to other highly specialized industries.

Patient care and safety is not simply our ultimate goal – it is our most sacred trust. St. Luke’s understands that it must, as a health system, plan in a way that builds an environment for safety to be both successful for the patient and the employee. Focusing on patient care and safety, then, is appropriate to look at whether the urban planning conceptual of a smaller building footprint on a grid system of streets versus a smaller building footprint on a grid system of streets should be tempered somewhat.

Perhaps we have to “agree to disagree” on where planning starts: patient care and safety versus a smaller building footprint on a grid street system. Starting from the gridded street system, St. Luke’s cannot achieve the health care planning goals for patient care quality and safety, and we’ve offered no reasonable mitigation to patient care quality and safety. Patient care and safety, we can achieve the health goals we believe are critical for our community and, with the collaborative assistance of the local government and citizens, we can also achieve the physical connectivity of the City with mitigation to the multimodal transportation system.

Q: What would happen to the giant sequoia tree on Avenue B?

There has been discussion about moving the giant sequoia located near Avenue B. A transplant specialist (for example, Environmental Design or Senna Tree C) will be contacted.

Q: Will the hospital development protect historic properties?

The City has taken steps to protect many historic properties in the City through the designation of historic overlay districts. St. Luke’s campus is not in an historic overlay district, yet, as discussed in Section 6.0 of the Master Plan, there was the possibility that some properties may be historically significant. Both the East End Neighborhood Policy Guide and Blueprint Boise polices speak to protecting historic resources.

St. Luke’s conducted an architectural survey and reviewed previously published information and research to determine whether properties were historically significant. The results were presented to participants including Preservation Idaho, Idaho State Historic Preservation Office, Idaho Heritage Trust, National Trust for Historic Preservation, City of Boise Department of Arts and History, and the City of Boise Historic Preservation Commission.

The results showed that none of the properties was considered historically significant. Nonetheless, there was sentiment for preserving six historically interesting structures in place or at receiving sites. St. Luke’s is committed to continuing its collaborative effort with these preservation organizations. St. Luke’s has identified a possible relocation strategy for several of these historically interesting structures on property owned by St. Luke’s along Avenue B and located immediately west of the hospital. Proceeding further south under the medical office building to the intersection with Jefferson Street, one would see the new public pocket park to the east that provides a bridge between the south slope of the hospital and the valley floor. The new park will be designed to include landscape, paved pathways, seating on benches and short walls, public art, and terraces down to outdoor dining.

Q: What is the appearance of the hospital from Jefferson Street at Avenue B?

The streetscape and façade design is evolving and will eventually be reviewed by Boise’s Design Review Committee. The most recent design is shown in the drawing immediately below.

The view of the hospital from Jefferson looking west across Avenue B to the new public pocket park, which includes varying out-patient, in-patient, and emergency care services, is a significant improvement in the public’s place of respite for the public, patients, visitors, and staff. The pocket park, which can be balanced within the overall land use goals and policies of the comprehensive plan. We completely understand that we must do this, and we firmly believe that we have balanced patient care and safety with other Blueprint Boise goals and policies. Some of our East End neighbors have told us that St. Luke’s needed to start with the existing street grid system, take that as an absolute, and then try to work health care planning around that. We did. It didn’t work.

Appendix B describes the different alternatives explored in an effort to improve access and connectivity without impacting this block of Jefferson Street. Although we appreciate the urban planning concepts associated with a smaller building footprint on a grid system of streets if patient care and safety cannot be accommodated within those constraints, then, from sound health care planning, it is appropriate to look at whether the urban planning concept of a smaller building footprint on a grid system of streets should be tempered somewhat.

Q: How will the streetscape provide more accommodative approaches to the public?

During the Master Plan review process, some individuals have written to the City to oppose the Master Plan based on their opinion that St. Luke’s is just a big corporation asking for the closure of a block of Jefferson as a subsidy from Boise residents. We hope that our presentation to the Council, and the record as a whole, conveys to the City and the public that, yes, with the closure of a block of Jefferson, St. Luke’s is asking that the public invest in its health care and connectivity. We also hope that the public recognizes that, for its return, St. Luke’s is investing in the public infrastructure substantially by providing enhanced, safer connectivity in the East End, St. Luke’s campus, Fort Boise and Downtown areas.

Q: Was a bike/pedestrian tunnel considered?

There are several emails in the record wondering whether tunneling...
under Jefferson was considered, and Commissioner Danley was adamant in his view that a tunnel could work well in this circumstance. Although we appreciated a tunnel could work well under the right circumstances, and we are aware of many examples from around the Country and the world, tunneling under Jefferson would not be practical or feasible in this instance.

Tunneling under the proposed hospital expansion along the Jefferson Street alignment would require cyclists and pedestrians to descend more than 35 feet underground in order to clear existing utilities and tunnels that connect above-ground buildings (test holes dug in the area have consistently hit water at 32 to 33 feet). To transition accessibility to that level would require ramp lengths in the order of 500 feet and a traverse of 300 feet laterally under the building. The overall tunnel length would require a user to travel more than three blocks underground beginning at Avenue C and then resurfacing between 1st and 2nd streets.

Q: Was a sky bridge considered (such as the parking garage sky bridge over 1st Street)?

We received this comment from individuals that have experienced the sky bridges at hospitals in other cities such as Virginia Mason in Seattle and Good Samaritan in Portland.

Sky bridges can work well for pedestrian movement but not the movement of a gurney.

Best practices in health care planning dictate the use of an “Integrated Care Model.” This means creating – literally – a horizontal spatial relationship among specific physician office space, diagnostic and treatment space, and beds, as needed. St. Luke’s. After much iteration, the Master Plan presented to Boise has been based on this design model. Please refer to Appendix B that describes the health care planning, architectural, cost and construction reasons why the Master Plan has been developed without a sky bridge over Jefferson Street.

Q: Can the pedestrian crossings along Avenue B be modified?

Pedestrian safety is very important to the City, ACHD and St. Luke’s. Traffic engineers are working on conceptual designs that will better accommodate pedestrian crossing activities through the use of pedestrian crossings or flashing beacons, pedestrian refuge areas, improved detection capabilities, signing and marking enhancements and signal timing adjustments.

Q: Could Avenue B be reduced in width to provide a shorter pedestrian crossing?

At the request of the City CH2MHill traffic engineers studied the effect that reducing the width of Avenue B would have on surrounding traffic operations. The complete technical memorandum of the study was filed with the City along with St. Luke’s application.

This “road diet” concept would reduce the number of lanes on Avenue B and Fort Street from a 5-lane to a 3-lane section from Warm Springs Avenue to 1st and Fort Streets. Desirably, the modification would accommodate greater bicyclist and pedestrian facilities; make crossing of Avenue B easier for pedestrians; divert traffic away from Avenue B; and make efficient use of other facilities such as Idaho and Main Streets and north-south streets west of the hospital. However, the detailed analysis found that because of the limited benefit, coupled with significant negative impacts, a road diet along Avenue B is not an appropriate engineering solution. • Even with a reduction to 3 lanes, there is still significant travel demand along Avenue B such that Avenue B will operate with poor levels of service and a volume to capacity ratio nearing or exceeding capacity; • Three of 4 intersections reviewed within this section will exhibit very poor levels of service and a volume to capacity ratio nearing or exceeding capacity; • Redistribution of traffic shows increased travel demand along several downtown corridors; additional capacity in those corridors, in the form of auxiliary turn lanes, will likely be needed; • Traffic queues are expected to extend beyond adjacent intersections; resulting intersection queues will be unable to clear at every cycle; • The increase in control delay at each intersection will add nearly 3 minutes of travel time from the intersection of Avenue B and Warm Springs to 1st and Fort Streets, which will affect timely response to emergency needs; • Impacts related to air quality and fuel consumption can be expected with the increased congestion; and • With significant congestion, at uncontrolled intersections, even with the reduced width of Avenue B, it is expected that pedestrian crossing opportunities will be limited.

Please refer to the question immediately above. St. Luke’s and its traffic engineers will continue to work with local governments and stakeholders to further the conceptual designs toward solutions for pedestrian crossings.

It may be unlikely that Avenue B could practically be reduced in width and staff reported to the Commission that a reduction in width was not likely acceptable to ACHD. Still, it is our understanding that the City has requested that ACHD review the road diet concept further.

Q: Is the Master Plan consistent with the East End Neighborhood Policy Guide?

The East End Neighborhood Policy Guide (“EENPG”) was adopted in 1988 and made consistent with Boise’s 1997 Comprehensive Plan in 1999. To the extent the EENPG conflicts with Blueprint Boise, Blueprint Boise takes precedence. The proposed infill development, coupled with the multimodal transportation improvements proposed by St. Luke’s, assists both the East End and the City as a whole to carry out the policies of the EENPG and Blueprint Boise.

The EENPG contains a “Background Report” that is not part of the goals and policies of the EENPG but it does provide historical context.

In 1988, when the EENPG was written, the East End Neighborhood Association (“EENA”) recognized the “Near East End” (that is, the area west of Avenue C) as an area in transition and an area that would benefit from an overall conceptual development plan, and that “[generally, traffic should be routed around interior sections of the neighborhood whenever possible, and should be concentrated along corridors as opposed to dispersal through the neighborhood.” In 1988, Avenue B was proposed for extension to tie Broadway to State Street. At that time, EENA asked ACHD to re-evaluate the plan to extend Avenue B suggesting that 3rd Street be used instead to connect to Broadway Avenue. It also noted that if Avenue B was determined to be the most efficient and cost-effective alternative, then special consideration should be given during the design phase to ensure safe and adequate multimodal access into the downtown area from the East End.

The EENPG and policies applicable today continue to recognize the transitional nature of the Near East End, the desire to route traffic around the interior of the neighborhood and that special consideration should be given to the design of Avenue B for “safe and adequate bicycle/pedestrian crossings between the main part of the East End Neighborhood and the downtown area.”

In 1988, Avenue B was proposed for extension to tie Broadway to State Street. At that time, EENA asked ACHD to re-evaluate the plan to extend Avenue B suggesting that 3rd Street be used instead to connect to Broadway Avenue. It also noted that if Avenue B was determined to be the most efficient and cost-effective alternative, then special consideration should be given during the design phase to ensure safe and adequate multimodal access into the downtown area from the East End.

The EENPG and policies applicable today continue to recognize the transitional nature of the Near East End, the desire to route traffic around the interior of the neighborhood and that special consideration should be given to the design of Avenue B for “safe and adequate bicycle/pedestrian crossings between the main part of the East End Neighborhood and the downtown area.”

The EENPG and policies applicable today continue to recognize the transitional nature of the Near East End, the desire to route traffic around the interior of the neighborhood and that special consideration should be given to the design of Avenue B for “safe and adequate bicycle/pedestrian crossings between the main part of the East End Neighborhood and the downtown area.”

Based on the cross section of Avenue B today, there is very little in the way of what would be considered adequate and safe bicycle and pedestrian crossings. Very possibly, what was considered adequate in the late 1980s would not pass muster today. The implementation of the proposed Master Plan, with its extensive multimodal improvements, will go far in meeting the policies of the EENPG to provide safe and adequate multimodal infrastructure improvements – far more adequate and safe than as provided when Avenue B was originally reconstructed in the late 1980s. The goals and policies of Blueprint Boise for multimodal transportation improvements are addressed with the Master Plan.

Further still, implementation of the Master Plan, if approved, will help the EENA ensure that vehicular traffic is encouraged to use the arterial/collector streets on the periphery of the neighborhood (including that portion of the Near East End neighborhood that is the St. Luke’s campus).
St. Luke’s Hospital opened its doors in a magnificent Romanesque home on December 1, 1902, and accepted its first patients a week later. Its founder, The Rt. Rev. James B. Funsten, was acting on an immediate need: medical care for retired Episcopal Church workers, and missionaries. But the six-bed hospital quickly accepted other patients—a becoming an institution with a larger mission: a community hospital.

Hospitals are woven from the fabric of their communities. The city was bustling with arts, theater, education, and the exercise of politics. Social and club life was active and righteous: caring for the poor and the orphaned, working with the schools, and supporting the hospitals. This potent idealism, the blending of progressive thinking and the orphaned, working with the schools, and supporting the hospitals, was solidified from the beginning.

In 1906, St. Luke’s was incorporated as St. Luke’s Hospital and Nurses’ Training School, with a charter that directed any profits to benevolent and charitable work and the development of the facilities. That same year construction of a three-story annex began—a gloriously modern facility with a granite facade. The first floor had nine new patient rooms, the second floor an operating room with huge windows and “mobile electric lights suspended over the operating table. The walls have an enamel finish and may be scrubbed.” The upper story had a new dining room with a modern kitchen, with a dumbwaiter used to transport not only food, but supplies and laundry as well. The new basement had a laundry and storage.

By 1907 the new hospital had both private and ward beds, for more than seventy patients, served by twenty nurses and twenty-five physicians.

According to St. Luke’s 1907 annual report, the most frequent surgical procedures were those for “female problems,” gunshot wounds were common, and diseases treated at the hospital included cancer, heart disease, diabetes, and arthrits, as well as hysteria, opium habit, delirium tremens, melancholia, and indigestion (an astonishing 54 cases).

St. Luke’s is known for its skilled, caring, and compassionate nurses, a foundation set early on. At St. Luke’s, the nurses, all young women, lived together at the Mary Douglas Burnham Memorial Home for Nurses, a gift of Mrs. W. R. Cochran of New York City. The home was furnished by the St. Luke’s Guild. By 1910, two more cottages were added to house twenty-five nurses.

The St. Luke’s Hospital Guild, established by Mrs. James Funsten in October 1902, was instrumental in raising substantial amounts of money, sewing for the hospital, and making bandages and sponges. As each of the expansions was completed, the Guild undertook the financial and physical obligation of outfitting patient and treatment rooms. This was of inestimable help. The original twelve members increased to thirty members by 1907.

Early on, St. Luke’s attracted benefactors from all over the country. One of the most compassionate gifts was $5,000 donated by Mrs. Thomas J. Emery to provide a free bed in the hospital for the care of the indigent. The 1908 board of directors’ minutes reflected this sentiment: “We further express our deep appreciation of this gift in behalf of suffering humanity and fully realize that its influence for good will be lasting.”

By 1919, St. Luke’s was beginning to plan for the new hospital, which would be completed in 1928; their initial cost projection: $150,000. The hospital was turning away patients, paying and otherwise; there weren’t enough beds.

In 1910, St. Luke’s began its first pediatric services in a donated house close to the hospital and in 1920 established its first nursery.

During this decade, medicine was still practiced primarily in homes rather than in clinics or hospitals. There were a number of unlicensed physicians practicing in the valley. Some of these practitioners provided alternative care, such as the Chinese herbalists and the midwives, in much the same way they do now. But in a few instances, outright fraud was committed.

To ensure that patients would be treated only by licensed physicians, the Boise Physicians and Surgeons Club was formed in 1912. The objectives also were to meet twice a month to discuss recent advances in medical science. General good health of the city also was discussed. Any reputable physician in the city was eligible for membership.

St. Luke’s Hospital was challenged by the growth of the community, a harbinger of St. Luke’s future. By 1915, the hospital had cared for about 8,000 people in total and trained more than one hundred nurses. The hospital had 70 beds, three operating rooms, and a plant that was worth more than $100,000. “A diet kitchen” was added in 1911, as well as an automatic elevator. A new x-ray machine was purchased in 1915; the old one was “less than successful.” A new nurses’ home was built for $17,000 in 1918.

The new St. Luke’s, 1929.

While community need was almost St. Luke’s undoing, the Boise community and the Episcopal Church also were St. Luke’s foundation and sustenance.

Then—and now—a hospital is not something apart from its community.

Years 1921-1930

St. Luke’s old hospital had severe limitations: a tiny kitchen in the attic, no place to house patients with similar infirmities, no place to house violent or mentally ill patients, no isolation unit for communicable diseases, and no room for expansion or technical improvement. The hospital increasingly had to turn away patients. The never-ending problem: not enough beds.

The 1921 board of directors had the good sense and good fortune to hire Miss Emily Pine as superintendent, and she changed the focus and direction of St. Luke’s Hospital. Miss Pine created an environment for expansion, professionalism, and interaction with hospitals across the nation. St. Luke’s entered the practice of modern medicine, which met not only community need, but also met national standards of practice.

On May 26, 1927, the board of directors voted “to build a new hospital”—a four-story facility that would rival any modern hospital in the West.

So acute was the need for the new hospital that 50 community leaders came forward in the spring of 1927 with this proposition: Build a new hospital for $250,000; the citizens of Boise would provide $125,000; the Episcopal Church would be invited to contribute the other $125,000. Bishop Funsten died in 1918, and following in his footsteps, The Rt. Rev. Middleton S. Barnwell accepted the challenge.

The campaign moved like a hurricane through the city. Three full days after the campaign started, $146,000 was raised in half the time allotted. Construction started in the fall of 1927, and the doors to the gleaming, modern hospital opened in 1928.

The following highlights the story of St. Luke’s Regional Medical Center, from its humble beginning as a frontier hospital to its current presence as part of the only not-for-profit health system based in Idaho. Selected passages contain information from St. Luke’s Regional Medical Center: A Century of Community, 1902-2002.
The new building was four stories high with reinforced concrete on brick-bearing walls (St. Luke’s still uses red brick, a symbol of tradition, strength, and commitment). The exterior of the building was faced with its stone belt course and sandstone cornice, faced 1st Street. The entrance was in the middle of the block, opening to the terrazzo lobby, and adorned with potted ferns and dark, elegant furniture. Private patient rooms as well as wards were housed on the ground floor and second floor; each room had a bathroom and a closet. A nurses’ station was placed in the center of each floor to save steps and time. The lovely new chapel, filled with sunlight, was in back of the nurses’ station on the first floor. The third floor housed the surgery suites, physiotherapy, and utility rooms, along with more patient rooms, a work room for lab and nursing, a dressing room for surgeons, plus waiting and consultation rooms. St. Luke’s provided 100 new beds for the patients.

In 1922, St. Luke’s Hospital affiliated with the American College of Surgeons. St. Luke’s medical practice began to exceed those of most hospitals in the interior West. In 1929, St. Luke’s installed one of the first electrocardiographs in the West outside of Salt Lake City, Seattle, and San Francisco.

During this decade, the Great Depression had taken hold. St. Luke’s, like the balance of the nation, was fiscally stretched. As a result, the hospital saw little physical growth, but increased patient demand and new services. St. Luke’s further developed its Laboratory and Radiology departments and, for the first time, established a Children’s Department.

St. Luke’s would not have survived those terrible years without the continuing support of the community.

Years 1941-1950

By the early 1940s, St. Luke’s 1928 hospital was inadequate: no isolation ward, limited pediatric space, and a general lack of bed space. A new laboratory, operating rooms, and laundry also were critical needs. Saint Alphonsus was also feeling the pinch, so the two hospitals banded together in a fundraising effort that was postponed during World War II. It resumed again in 1947 and netted more than $800,000 by 1949. Because the bids for hospital construction had changed considerably in the intervening years, St. Luke’s share, $400,000, was less than half the money needed for construction of the new wing. Another $600,000 was raised over the next two years. St. Luke’s altered its plans a bit, and the new wing was completed in 1952.

Years 1951-1960

The decade of the 1950s was one of stability, optimism, and growth. Boise’s population was booming, growing from 40,000 in 1940, to 50,000 in 1950 to 70,000 in 1960. Some of those children, and the 1,000 or so babies born at St. Luke’s each year in the early 1950s – today’s Baby Boomers.

The technological changes that began in the 1950s transformed the way the world works – the way St. Luke’s works – in less than 20 years.

St. Luke’s celebrated its 50th anniversary in 1952 by opening the new “Million Dollar Wing,” the culmination of the late 1940s joint fundraising campaign with Saint Alphonsus.

“Modern medical care at its finest is no longer a distant dream,” the March 13, 1952, Idaho Statesman reported. “It has become a reality with the opening of new and remodeled facilities at St. Luke’s Hospital, now Idaho’s largest.”

“The hospital now has 245 patient beds, including bassinets for the newborns. Additional changes have been made throughout existing facilities, as well as construction of the entire new wing, to provide all the auxiliary services needed to care for a large number of patients.”

Mrs. Helen Ross, superintendent of St. Luke’s during the 1950s, guided St. Luke’s as the hospital recovered from the war years, through the building and funding of a new wing and the beginnings of massive technological change. She was elected as the second vice president of the American College of Hospital Administrators in 1954, the first St. Luke’s administrator to hold office in a national professional organization.

In 1954 St. Luke’s received its first accreditation from the Joint Commission. Because of the accreditation, St. Luke’s was able to apply for and receive a $66,000 grant from the Ford Foundation, the beginning of grant-making opportunities. Local excellence brings national recognition and a chance to raise funds for vital improvements, an acknowledgement lost on no one – then or now.

By 1959, the physical plant was too small, outpaced by community need. A long-range plan for expansion would cost $2,000,000 and provide 300 beds. St. Luke’s was awarded more than $303,000 in Hill-Burton funds via the United States Department of Health, Education, and Welfare for a new lab and a X-ray diagnostic and treatment center, above half the money required for the project.

An isotope laboratory, radiotherapy, and cobalt therapy were established using cancer research and treatment funds, and by 1955 St. Luke’s Tumor Board was comprised of six doctors for the purpose of supervising the tumor registry, conducting tumor conferences and clinics, and the oversight of cancer cases. In 1956, St. Luke’s Tumor Board received approval from the American College of Surgeons, one of the first “cancer facilities” in Idaho to receive that recognition.

Years 1961-1970

In the early 60s, St. Luke’s was building again to meet the community’s need for healthcare services. A new addition gave the hospital 18 new medical beds, five new obstetrics beds, and three new pediatrics beds; air conditioning and a new heating system; a new recovery room; a new pharmacy; a central sterile supply department; a new main entrance off Bannock Street; a centralized admission area; an enlarged coffee and gift shop; new visitors’ lounges; and remodeled physical therapy, maintenance, and administrative areas. The new wing was dedicated in September 1962.

As significant as the new wing was, it wasn’t as significant nor as far-reaching as the new Medicare and Medicaid legislation, signed into law by President Lyndon Johnson in 1965. In the fall of 1967, St. Luke’s accepted its first Medicare patient. The advent of Medicare and Medicaid, which seemed like a godsend to older Americans and the indigent at the time, introduced a whole new era of governmental control, regulation, influence, and payment, which remains both a benefit and a challenge to healthcare providers today.

In 1968, Dr. Rodney Herr performed Idaho’s first open heart surgery at St. Luke’s, setting the cornerstone for what would become Idaho’s largest, nationally-recognized cardiovascular services department. The hospital expanded to include a cardiac catheterization lab for diagnosis and treatment, a four-bed intensive care unit, and a cardiac surgery suite.

The dedication was held in the fall of 1977. Governor John Evans said, “The addition marked St. Luke’s 75th anniversary, a milestone in the progress of medical care in Idaho.”

During President Lyndon Johnson’s administration, legislation was enacted that provided grant monies for the prevention and treatment of cancer, heart disease, and stroke. With the grant deadline rapidly approaching, then hospital president E. E. “Gill” Gilbertson wrote a federal grant that would provide part of the financial foundation for Mountain States Tumor Institute (MSTI). Fred Bagley, a Boise businessman and St. Luke’s trustee, successfully lobbied Governor Cecil Andrus and the Idaho Legislature for state funds that supported MSTI’s mission. Thanks to Gill’s efforts, those of local internist medicine specialist Dr. Maurice Burkholder, and many others, Mountain States Tumor Institute opened on the St. Luke’s Boise campus in 1971; today, St. Luke’s MSTI is Idaho’s largest and most comprehensive provider of cancer care services for both adults and children.
community of care providers. The continuum of quality care now extends 300 miles in any direction, thanks to these committed partnerships, St. Luke's Health System's institutions of higher education throughout the region, surrounding Boise. Partnerships were established with hospitals and medical schools in Nevada and eastern Oregon. The Robert Wood Johnson Foundation and Pew Charitable Trust grant allowed St. Luke's to support patient care in the rural areas of this region.

During his tenure, which ended in 2010 when he retired as president and CEO of St. Luke's Health System, St. Luke’s formed centers of excellence in cancer care, cardiac services, and women’s and children’s services. The concept of patient care teams was enlarged and encouraged throughout all of the hospital units and services, often regionally. The Robert Wood Johnson Foundation and Pew Charitable Trust grant allowed St. Luke’s to support patient care in the rural areas surrounding Boise. Partnerships were established with hospitals and institutions of higher education throughout the region. Thanks to these committed partnerships, St. Luke’s Health System’s continuum of quality care now extends 300 miles in any direction, and today St. Luke’s Boise Medical Center is the hub of an entire community of care providers.

St. Luke’s was the first hospital in the country to become a Children’s Miracle Network telephone partner, even before officially becoming accredited as a children's hospital, which occurred in 1999 to the benefit of severely ill and injured youngsters and their families across the region.

St. Luke’s has been advancing healthcare and providing for the needs of the people in our region for well over a century and we continue to shape the transformation of medicine in the West and beyond. Wherever we go in the future — medically, technologically, or structurally — and however we get there, we will do so as a team, hand-in-hand with the communities we serve, guided by our not-for-profit mission and our values of integrity, compassion, accountability, respect, and excellence. All of these efforts have come together over the years to help meet the ongoing need for high quality, evidence-based, compassionate care, and to further St. Luke’s mission “To improve the health of people in our region.”

Now, St. Luke’s is planning another critical development that will allow its Boise hospital to deliver on its commitment to patients and continue to provide the level of care that in 2014 helped St. Luke’s Health System become recognized by Truven Analytics as one of the Top 15 Health Systems in the United States. Over the course of many years, this planned development will result in a new Children’s Pavilion, expansion of the Children’s Hospital, modernization and renovation of the main hospital tower (critical care units, labor and delivery, emergency department, operating suites, and about 60 additional patient rooms), expansion of St. Luke’s MSTI cancer services, and construction of a new central plant and parking structure.

“St. Luke’s has been advancing healthcare and providing for the needs of the people in our region for well over a century and we continue to shape the transformation of medicine in the West and beyond. Wherever we go in the future — medically, technologically, or structurally — and however we get there, we will do so as a team, hand-in-hand with the communities we serve, guided by our not-for-profit mission and our values of integrity, compassion, accountability, respect, and excellence.”

In 2014, St. Luke’s Fruitland medical plaza opened, providing physician clinics, diagnostic services, and 24-hour emergency services.

In 2012, St. Luke’s Nampa opened, providing physician clinics, diagnostic services, and 24-hour emergency services in Canyon County.

In 2006, Magic Valley Regional Medical Center joined with St. Luke’s and St. Luke’s Health System was officially formed among St. Luke’s Boise, Meridian, and Wood River hospitals and MVRMC, which became known as St. Luke’s Magic Valley. In May 2011, a new, state-of-the-art hospital was built in Twin Falls to serve the area’s growing healthcare needs.

In 2012, St. Luke’s Nampa opened, providing physician clinics, diagnostic services, and 24-hour emergency services in Canyon County.

3.0 EXISTING CONDITIONS

Beginning in 2009, the consultant team was asked to provide a series of comprehensive assessments of the existing St. Luke’s Boise facility. The analysis consisted of a series of building system investigations and walkthroughs of the Boise facility. The assessment considered all aspects of healthcare delivery as well as site conditions, existing infrastructure, surrounding neighborhoods and historical structures, interior finishes, patient and staff circulation, existing building codes, and forward looking consideration of pending healthcare guidelines and standards.

3.1 ENVIRONMENT OF CARE ASSESSMENT

Purpose of Review:
The purpose of this review was to establish the existing condition of the hospital. In particular, this evaluation is to establish the potential for addition and/or remodeling.

Basis of Evaluation:
1. Existing physical condition.
2. Compliance with codes that would be in effect if remodeled or an addition was added.
3. Site availability for addition.

Existing Physical Condition:
The following review represents a visual and plan evaluation of the facility. There was no specific testing for items behind walls, ceilings, or floors; however, there was opportunity to look above ceilings and below floors in a couple of access points. All mechanical and electrical rooms were visually reviewed. The roof was viewed. A basic understanding of the existing mechanical and electrical systems was achieved. Building was reviewed for space and architectural only. Reports for mechanical and electrical systems are not included.

Site Analysis:
The site is fully used at the present time. Any addition or new building would require loss/relocation of parking and/or other buildings. Site improvements such as pavements and sidewalks, while in reasonable condition, show some signs of aging but appear to meet accessibility standards. Site landscaping is mostly simple and mature, except for the existing Sequoia of immense size located to the north of the hospital across Jefferson Street.

Parking availability is adequate for both visitors and staff, except some of the staff parking is a considerable distance from the hospital. Parking is primarily provided in structured parking with minimal existing surface parking. It is not feasible to add on to the existing parking structures; therefore, new parking accommodations for visitors and staff must be provided and convenient to any new construction.
in 1990 and most of the following comments also apply to that year. Though the building is quite well maintained, portions of the building and work well today. If expansion/additions are needed, these spaces could easily be added on to with minimal code concerns.

The preliminary review was for all trees, both in the Rights of Way that are City-owned and those located on private property, but fall within the Landscape Ordinance. Any trees to be removed as part of future building projects and are assessed as healthy and desirable will require mitigation per Ordinance and any new trees planted within the Right of Way will require a permit for planting from the Boise City Forester to ensure compliance with tree species and specific planting locations.

A review with a landscape contractor to determine the cost for relocating any trees that are healthy, desirable, and of the caliber that could be relocated was also conducted. Estimated transplanting costs are noted for individual trees that could be relocated. It is also noted that any plant material determined to be capable of relocation should be relocated during the proper season (after leaves have fallen in autumn or before leafing out in spring).

Shrubs are briefly described in the assessment to present a complete inventory.

Generally, the area observed contains over 150 individual trees consisting of a mix of silver maple ranging in age from 40-60 years, oaks, elms, ashes, and multiple species of conifers including a 100-year old giant Sequoia. The Sequoia is located in an area of probable future expansion. Thus, St. Luke’s is exploring relocation due to its perceived significance to the community; however, a new location has not been identified.

Overall, the species and spacing of trees within the Right of Way are consistent and complementary to the surrounding neighborhoods. In the opinion of the surveyor, most trees surveyed were in fair health at the time of the assessment given their respective ages, except for those specifically noted. As previously indicated, an official assessment of health is under the jurisdiction of the City of Boise.
Circuit GRVE-13 is dedicated to the SLHS facility, meaning that it feeds no other customers, and there are no plans for it to feed other customers. IPCo, through a contract with SLHS, provides a guaranteed capacity of 10 MVA for the facility on this circuit. The point of demarcation of GRVE-13 is a switch station denoted as ‘SW1.’ This switch station is freestanding primary S & C switchgear that is located beneath the section of the SLHS parking garage that spans the northeast corner of N. 1st Street and E. Idaho Street. It is where the primary revenue meter is located. Downstream of SW1, the circuit is looped, which allows it to feed the full 10 MVA to the facility in two directions.

Another circuit from the Grove Street Substation, GRVE-14, is able to provide a limited, alternate source of power to the SLHS facility in the event that the primary source of power, GRVE-13, is not available. The facility can be manually switched from GRVE-13 to GRVE-14 at SW1. GRVE-14 does not have a guaranteed capacity for the SLHS facility. It currently provides approximately 6 MVA to the statehouse complex and other customers to the west. The remaining capacity on GRVE-14 is insufficient to fully support the existing SLHS facility, which has a measured demand of 7 MVA according to IPCo.

Projecting this demand load to the year 2030 and escalating it for the anticipated build-out, the demand load is anticipated to be just less than 11 MVA. This may require that a second primary-metered feeder be brought to the facility. IPCo will be contracted to perform a load study and to recommend the best alternative to economically provide the power needed to support the development of the facility. The new design will take into consideration the recommendations of IPCo, but it is anticipated that a second primary loop feed capable of being separately metered will be required. Construction will be required in and around the expanded facility, primarily along N. 1st Street, E. Jefferson Street, E. Fort Street, and Avenue B. If a second feeder is required to be supplied from the Grove Street Substation, construction activity could be expanded south to include the south end of N. 1st Street, E. Warm Springs Avenue the area around the south St. Luke’s parking garage to the Grove Street Substation.
4.0 HEALTH CARE NEEDS

St. Luke’s is committed to being the most caring partner Boise-area residents can have for their health. This means St. Luke’s must plan to provide exceptional care not just today, but well into the future. The simple fact of the matter is in the future there are going to be more, a lot more, Boise-area residents who need a caring health partner.

According to John Church and Idaho Economics, the population of the Treasure Valley is expected to increase from 2012 data by almost 300,000 people by 2030.

The realities of an aging population, the increasing incidence of obesity and the number of patients with chronic conditions compound the significant population growth driving the need for transforming St. Luke’s downtown hospital. Doing so will allow St. Luke’s to continue to deliver innovative and exceptional care to patients, just like it has since the first building was constructed in the early 20th century.

But what does this combination of factors specifically mean for the downtown hospital?

In the simplest of terms, it means the hospital needs to be bigger because more space is needed to treat those additional patients with one or more of those compounding factors. Every major kind of care provided at the hospital will have more patients, from emergency to cardiology to radiology to the Children’s Hospital.

The need for more space is not unique to today. Indeed, St. Luke’s downtown hospital? has faced the need for more space before. Since the first downtown hospital was built in the early 20th century, there have been a number of developments to meet the growing demand of previous times.

According to John Church and Idaho Economics, the population of the Treasure Valley is expected to increase from 2012 data by almost 300,000 people by 2030.

It is also important to recognize that over the course of the decades, a lot has changed about the patient health care experience. Nearly 90 percent of patient visits are for outpatient services. This is a major change from decades ago.

What this means is the downtown hospital needs to be designed so the ten percent of patients who stay in the hospital are comfortably receiving the care they need, while the other ninety percent can come, get their care efficiently, and return home.

Convenience, safety, ease of finding your way, and especially proximity to the right doctors, nurses and technology each patient needs, are critical to ensuring a patient receives the best experience possible.

As healthcare has evolved, planners and caregivers learned the benefits of creating convenience and efficiency through horizontally locating care delivery components adjacent to one another. This practice, called an Integrated Care Model, strives to place the specific physicians, the diagnostic and treatment spaces and equipment required by the treatment plan, next to inpatient beds. Thus, providing more connected care. Rather than having to travel to multiple places around the hospital, the patient is able to go to their doctor’s clinic, get a procedure done, if needed, and/or be admitted, on the same floor in an integrated fashion.

If a patient enters the hospital via the ED, they can be stabilized and then moved to the appropriate floor for the particular kind of care they need. This is ultimately better for the quality of care a patient receives, it is more efficient and it provides for a more personalized patient experience, and ultimately a better quality outcome.

4.1 LOCATING GROWTH COMPONENTS

Changes in HealthCare Delivery:

The Affordable Care Act is changing the way health care is delivered and collaterally, the facilities delivering care must react and remain flexible. In the past, the location of the physician’s office could have been blocks or miles away from the actual hospital, with the doctor proceeding to deliver outpatient care in his office and once or twice a day checking on his patients who are in the hospital. As pressure has increased to shorten the length of stay and decrease the cost of care, the physician finds himself regularly involved in the activities going on inside the hospital itself. Particularly, in tertiary care centers such as St. Luke’s Boise facility, the interaction among patients, physicians, diagnostic technicians, and nurses occurs frequently throughout the day. This has required the integration of physician office practices, not only in the neighborhood of the hospital, but physically connected to the hospital to allow frequent movement of staff and physicians between the inpatient setting and the outpatient setting.

The Affordable Care Act is changing the way health care is delivered and collaterally, the facilities delivering care must react and remain flexible. In the past, the location of the physician’s office could have been blocks or miles away from the actual hospital, with the doctor proceeding to deliver outpatient care in his office and once or twice a day checking on his patients who are in the hospital. As pressure has increased to shorten the length of stay and decrease the cost of care, the physician finds himself regularly involved in the activities going on inside the hospital itself. Particularly, in tertiary care centers such as St. Luke’s Boise facility, the interaction among patients, physicians, diagnostic technicians, and nurses occurs frequently throughout the day. This has required the integration of physician office practices, not only in the neighborhood of the hospital, but physically connected to the hospital to allow frequent movement of staff and physicians between the inpatient setting and the outpatient setting.

This shift, which gradually began to take place before the turn of the 21st century, has accelerated not only because of the changing practice of health care, but because of St. Luke’s Boise Medical Center’s role changing as the facility became the center of the St. Luke’s Health System. This change drew patients not only from Boise, but also the surrounding region, to the Boise facility for more specialized care.

Further, healthcare reform is predicated upon shorter lengths of stay, better outcomes, and lower costs, thus accelerating the need for physician and staff interaction in both inpatient and outpatient settings.
The new organization of St. Luke’s Boise Medical Center physically needs to mirror the operational changes that have aligned five centers of excellence, or service lines, to take care of major disease groups within the medical center. These service lines are heart and vascular, women’s, ortho/neuro, children’s, and cancer. As much as possible within the context of the existing facilities, the planning of the new facility works to horizontally align inpatient beds, outpatient physician offices, and the diagnostic and treatment components important to each of the service lines to allow the physicians and staff to flow between inpatient and outpatient settings. This process allows for increased productivity on the part of the staff, thereby reducing costs, and a higher quality of care can be delivered when the right people are in the right place at the right time.

Understanding the Interrelationship of Service Line Departments:

As indicated in “St. Luke’s Organizational Model,” the relationship between departments of a service line interact with each other through the process of care delivery. In the diagrams following are several illustrated typical examples of steps of care being delivered to patients, usually beginning in the outpatient department and continuing through a diagnostic and treatment and inpatient stay. The flow illustrated demonstrates that the relationship between component departments of any service line are key indicators of success when they can be horizontally adjacent.

Taking Advantage of the Investment in Existing Facilities:

It would be an inappropriate cost for the community to bear to require such extensive renovation of the existing facility so as to not make full utilization of the existing infrastructure the community has invested in already. Therefore, the facility planners have considered the needs described above and taken into account the maximization of the existing hospital infrastructure with the potential of immediate adjacent growth to interconnect new and old in such a way to minimize the new facilities required when existing buildings will provide the necessary opportunities.

As a result, in order to retain the investment of the existing facilities, the facility planners have proposed broad connections on all levels of the existing facility to the new building, which is illustrated in more detail in the previous diagram.
5.0 ALTERNATIVES ANALYSIS

As part of the master plan process, the St. Luke's Design Team identified possible expansion sites adjacent to the existing facility. Sites were considered initially regardless of current ownership, but as illustrated in the commentary, ownership was a consideration. Each location was then populated with large blocks representing approximate building square footage required to address each need and conceptually arranged based on best practice departmental adjacencies. The resultant options were then evaluated based on a set of healthcare planning criteria aligning with the institution's commitment of fiscal responsibility and St. Luke's Triple Aim: better care for individuals, better health for populations, and lower costs.

The four possible expansion options were individually evaluated on the following criteria. Each criteria is described in detail in an effort to establish a consistent understanding for application. Individual criteria have been categorized under the Triple Aim component it most closely represents, although some criteria fit within multiple objectives.

Possible expansion locations explored include:

- **East** - Location includes the two full blocks east of the existing hospital bound by Jefferson Street, Warm Springs Avenue, Avenue B and Avenue C. Properties include both St. Luke’s-owned and non-St. Luke’s-owned interests.
- **South** - Location includes the full block bound by Bannock Street, Warm Springs Avenue, Avenue B and Avenue C, and the area directly in front of the main hospital entry currently occupied by the existing Patient/Visitor Parking Garage. Properties include both St. Luke’s-owned and non-St. Luke’s-owned interests.
- **West** - Location includes two full blocks to the west of the existing hospital bound by State Street, Bannock Street, 2nd Street, and 1st Street, currently housing St. Luke’s Medical Office Plaza and smaller hospital-owned properties.
- **North** - Location includes two full blocks north of the existing hospital bound by State Street, Fort Street, Jefferson Street, and 2nd Street. Properties include hospital Central Plant and smaller hospital-owned properties.

In the following sections, the evaluation criteria is explained, each alternate solution is described and evaluated, and the preferred option illustrated. In addition, the team explored additional variations to the preferred location option, and commentary is included addressing challenges encountered.

5.1 EVALUATION CRITERIA

The four possible expansion options were individually evaluated on the following criteria. Each criteria is described in detail in an effort to establish a consistent understanding for application. Individual criteria have been categorized under the Triple Aim component it most closely represents, although some criteria fit within multiple objectives.

Better Care

Internal Circulation Connectivity - Traditionally, hospitals grow and evolve over time; as a result, corridors become buried within masses of building and where there was a door or window yesterday, there is a wall today. If not considered up front as an organizing element, staff efficiency and patient and visitor comfort may be sacrificed. This criteria addresses the need to simplify, maintain, and enhance existing corridors and connectivity into possible expansion areas.

Minimize Disruption to Current Operations - The hospital serves the community and region by providing care for the sick and injured. Key to this objective, the hospital and its services must maintain operations 24 hours a day, 7 days a week, 365 days a year. Its services cannot be interrupted nor stopped without significant consequence.

Visibility/Patient Accessibility and Convenience - The hospital entrances and access must be readily accessible and intuitive to patients. This is especially true in emergency situations when patients and family under situational stress need to find the hospital, park if needed, and locate the entrance as expeditiously as possible.

Sufficient Future Capacity - As previously stated, interruption to hospital operations can be disastrous and costly. By providing the maximum amount of future capacity and flexibility that can be afforded over meeting current needs, the hospital can minimize future impacts.

Parking Near Entrance(s) - Akin to patient access, adequate parking near entrances is imperative for patients who are of limited mobility and for those responders charged with their care.

Better Health

Reduce/Eliminate Pedestrian-Vehicular Conflicts - One of the principle precepts of medical ethics that all students are taught in medical school is “First, do no harm.” The hospital facility should, by its nature, be safe. In an urban setting where cars, pedestrians, and bikes exist, care should be given to reduce the possibility of instances where pedestrians and cyclists can potentially be struck by vehicles.

Minimize Negative Impact on Public Infrastructure - This criteria gauges expansion scenarios on their perceived impact on existing utilities like power, water, and sewer, as well as existing roadway, pedestrian, and bicycle networks.

Connects to Most Recent Construction - Over time, building codes and technologies advance, becoming better at protecting and serving building occupants. An example of this is revisions to building codes as a result of failures due to earthquakes and other natural disasters. Portions constructed post code revisions are more advanced and in turn have more longevity than previously constructed sections and do not directly depend on older infrastructure for delivery of services. Connecting to the most recently constructed portion of the hospital is not only safer, it also helps ensure better long-term viability by not attaching to construction that may be nearing the end of its functional life, ultimately needing to be replaced.

Lower Costs

Enable Facility Regeneration - As a not-for-profit, St. Luke’s strives to be sustainable and a positive community steward. Aligned with its mission to lower costs, it must responsibly use resources, one of which is the land the Boise facility occupies. To ensure there is room to grow in the future and to mitigate impact to its neighbors,
the options were judged on how well they protect future growth opportunities without sprawl.

Connection to Central Plant - The Central Plant houses building systems essential for the operation of the hospital facilities. New construction needing these services must be able to reasonably connect to the Central Plant in order to avoid costly and unnecessary redundancies.

Respects Existing Investments - Being a not-for-profit means St. Luke’s has to invest wisely in its facilities and its delivery of health care. Its financial resources are limited and existing investments, like recent investments in surgeries and emergency services, must be maximized.

Constructability - The end solution must be able to be efficiently built and flexible to adapt to future needs, so as not to waste limited resources.

In Section 5.3 ALTERNATIVES, the preceding criteria have been applied and tabulated to inform site preference.

5.2 BUILDING ORGANIZATION

The expansion of St. Luke’s Boise facility is a result of deep fundamental changes that have taken place in Boise, the Treasure Valley, and in the rational delivery of health care. First is the fundamental shift of delivery of health care from a mostly inpatient model where care is delivered in the hospital to resident patients, to a mostly outpatient model where patients are only admitted to the hospital overnight if there is simply no other way to deliver appropriate care. This shift has been and will be more pronounced by the recent Affordable Care Act, which pressures hospitals and doctors to shorten stays and shift has been and will be more pronounced by the recent Affordable Care Act, which pressures hospitals and doctors to shorten stays and at the same time improve the quality of care and reduce the overall cost of that care. The result is to place the specialist physicians more and more in both the hospital providing care and in the outpatient clinic on an hour-by-hour basis to provide care. Gone are the days when a specialist physician can have his office blocks or miles away.

Additionally, the role of St. Luke’s Boise facility has changed in the delivery of care in the Treasure Valley as St. Luke’s has become a multi-hospital system. St. Luke’s Boise Medical Center is the tertiary care center of the health system, caring for the sickest of patients from the entire Treasure Valley.

The result of these fundamental changes in healthcare delivery has been a need for more specialized care capability at the Boise facility and the deeper integration of physician clinics in close proximity to the care delivery modalities of surgery, radiation therapy, imaging, neonatal intensive care, cardiac cath, and other vital technologies that save lives. Hospitals are an integrated whole and as a modality such as surgery expands, the footprint of the area needed is beyond the available footprint of the existing blocks. Current planning suggests that the integrated footprint that needs to properly integrate the Boise facility is five floors of functions expanding across the existing Jefferson Street and an additional five floors of corridor connectors.

5.3 ALTERNATIVES

In the table below, the previously described site opportunities have been evaluated per the criteria outlined in Section 5.1 EVALUATION CRITERIA. Based on the results and more detailed investigation, the North solution provides the best opportunity to achieve the evaluation criteria from a healthcare planning perspective, in addition to aligning with the goals of the Triple Aim.

<table>
<thead>
<tr>
<th>SITE SELECTION EVALUATION</th>
<th>EAST</th>
<th>SOUTH</th>
<th>WEST</th>
<th>NORTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal Circulation Connectivity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimize Disruption to Current Operations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visability/Patients Accessibility and Convenience</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sufficient Future Capacity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ParkingNear Entrance(s)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reduce/Eliminate Pedestrian Vehicular Conflicts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimize Negative Impact on Public Infrastructure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connects to Prior Recent Construction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enable Facility Renovation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connection to Central Plant</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respects Existing Involvements</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constructability</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To further illustrate the rationale for the recommendation, each alternative has been taken to a greater level of development and an additional layer of traffic planning evaluation was undertaken to further inform the decision-making process. Each are provided here with further commentary for consideration.

EAST ALTERNATIVE

- With some exceptions, St. Luke’s does not currently own the property required to accommodate the East Solution.
- Jefferson Street between Avenue B and Avenue C would be required to vacate and close.
- Bannock Street drop-off would require closure of Bannock Street to through traffic, leaving access to the East End only from Warm Springs Avenue and Reserve Street.
- Additional access points to new facilities would be necessary on Avenue C, increasing congestion deeper into the East End.
- New hospital development connected to existing inpatient areas via bridge at upper levels, making departmental efficiencies and care delivery a challenge.

WEST ALTERNATIVE

- The buildable footprint available for the hospital development would be insufficient for the anticipated building program. The overall height of the expansion would increase, further impacting the adjacent neighborhood.
- Development to the east straddles Zoning Districts H-5 and R-3, and a Minor Arterial. Rezoning to allow the new use and necessary additional height involves risk and decreases possibility of success.
- Street-level connectivity between new construction and existing presents safety challenges to pedestrians crossing Avenue B.

- Locating the hospital development to the west of the existing building would necessitate a Jefferson Street drop-off for expanded and relocated services, increasing vehicular traffic on Jefferson Street. The new medical office building would be required to be located on the north side of Jefferson Street for efficiency, further increasing congestion. Locating building access along Jefferson Street would also increase pedestrian crossing at street level, increasing the opportunity for vehicular conflict.
- This option would require vacuation and closure of 1st Street between Bannock Street and Jefferson Street to allow for a larger building footprint.
- Increased traffic, as a result of the development, would be distributed around the facility rather than at a single point.
- Older, seismically challenged portion of the existing building becomes ‘landlocked’ and in the way of the next major development, potentially causing future connectivity and disruption issues.
- New hospital development not connected to clinics or existing inpatient areas; making departmental efficiencies and care delivery a challenge. Location increases potential redundancies, and construction and staffing costs.

All new traffic volume is concentrated at Warm Springs/Avenue B/Main/Idaho Street intersection, further congesting an already congested area.

WEST ALTERNATIVE

- Locating the hospital development to the west of the existing building would necessitate a Jefferson Street drop-off for expanded and relocated services, increasing vehicular traffic on Jefferson Street. The new medical office building would be required to be located on the north side of Jefferson Street for efficiency, further increasing congestion. Locating building access along Jefferson Street would also increase pedestrian crossing at street level, increasing the opportunity for vehicular conflict.
- Increased traffic, as a result of the development, would be distributed around the facility rather than at a single point.
- Older, seismically challenged portion of the existing building becomes ‘landlocked’ and in the way of the next major development, potentially causing future connectivity and disruption issues.
- New hospital development not connected to clinics or existing inpatient areas; making departmental efficiencies and care delivery a challenge. Location increases potential redundancies, and construction and staffing costs.

All new traffic volume is concentrated at Warm Springs/Avenue B/Main/Idaho Street intersection, further congesting an already congested area.

WEST ALTERNATIVE

- Locating the hospital development to the west of the existing building would necessitate a Jefferson Street drop-off for expanded and relocated services, increasing vehicular traffic on Jefferson Street. The new medical office building would be required to be located on the north side of Jefferson Street for efficiency, further increasing congestion. Locating building access along Jefferson Street would also increase pedestrian crossing at street level, increasing the opportunity for vehicular conflict.
- Increased traffic, as a result of the development, would be distributed around the facility rather than at a single point.
- Older, seismically challenged portion of the existing building becomes ‘landlocked’ and in the way of the next major development, potentially causing future connectivity and disruption issues.
- New hospital development not connected to clinics or existing inpatient areas; making departmental efficiencies and care delivery a challenge. Location increases potential redundancies, and construction and staffing costs.

All new traffic volume is concentrated at Warm Springs/Avenue B/Main/Idaho Street intersection, further congesting an already congested area.

NORTH ALTERNATIVE

- The floor area illustrated is required to meet anticipated building program, and critical relationships can be satisfied on contiguous floor plates.
- New and existing primary hospital functions like surgery, emergency department, and associated support functions connect to create a horizontally integrated care model only if Jefferson Street is closed. This approach is most efficient for healthcare delivery and provides the best opportunity for successful healthcare outcomes.
- Jefferson Street east of 1st Street provides an opportunity to develop shared outdoor space for public and hospital users.
- The new 1st Street drop-off would cause increased congestion at 1st/State/Fort intersection. Although, the resultant congestion could be mitigated.
- Vacation of 1st Street is desired to allow control of setbacks and maximize buildable footprint. 1st Street could remain open for local access.
- The North Solution distributes increased traffic volume, driven by St. Luke's development around the facility, rather than at a single point.
- Solution creates more compact facility and limits sprawl potential.

5.4 PREFERRED ALTERNATIVE

As illustrated, the North Solution ranks best of all locations explored. However, perceived execution of the concept necessitates a road vacation and closure to allow existing departments on lower floors, containing some of the more expensive and heavily invested space, to expand horizontally. As previously discussed, contiguous space within key departments is operationally and fiscally more efficient. A detailed look at current floor heights relative to existing adjacent street elevations illustrates the challenge of maintaining the street. Thus, the solution would impact public infrastructure.

In an effort to explore alternative approaches within the North Solution and further minimize impact on existing infrastructure, St. Luke’s team explored bridging the street. Considering impacts to the healthcare and building organization approach previously discussed, a bridge option would necessitate relocation of key departments to floors above the street to effectively address perceived needs and best-practice adjacencies.

In this case, existing departments needing large contiguous space would have to move up in the structure to a floor capable of supporting this need, causing abandonment of multi-million dollars’ worth of previous investment and sacrificing current relationships to supporting ancillary functions. Some ancillary functions may require duplication to continue to support these relocated departments.

Collaterally, the resultant smaller floor plate of the new building would necessitate a less than ideal vertical adjacency of departments like Emergency and Imaging, as well as potentially isolating future pediatric emergency services from the balance of the Children’s Hospital, or causing redundant emergency services.

Ignoring the financial, departmental, and patient experience impact and focusing solely on public infrastructure, Jefferson Street would remain open and usable to automobiles, pedestrians, and bicyclists. The structure bridging it would be in the order of 400 - 500 feet in length and five to six full floors in height beginning at the third floor. This is conceptually taller than if the road were to be closed and larger floor plates were able to be accommodated at lower levels.

The compromises to patient and public safety inherent in this alternative are too great and the alternative is not feasible with the plan’s current objectives. Thus, St. Luke’s cannot support this approach.

Following are several examples of where similar approaches have been implemented elsewhere, as well as a conceptual rendering illustrating the specific condition described.
6.0 HISTORICAL ASSESSMENT

6.1 EVALUATION OF HISTORICAL SIGNIFICANCE

PURPOSE

This architectural survey is an effort to determine if selected properties within the defined block area of W. Bannock to W. State Street between N. 1st Street and N. 2nd Street are potentially historically significant and worth more detailed survey efforts. The study block area included 15 properties.

BACKGROUND INFORMATION

The study block area is part of the original Boise City Townsite, recorded in 1867, an area extending from Fort Street on the north to Front Street on the south, from 1st Street on the east to 16th Street on the west. Several national historic districts have been established within the original Townsite. Immediate to the study block area is the State Street Historic District. Established in 1978, the district is generally bound by W. State Street on the north to W. Jefferson Street to the south and N. 2nd Street on the east to N. 3rd Street on the west. The area was considered significant based on its association with persons and architects/architecture important to the history of Boise.

In May of 1997, the Boise City Planning Department and the Boise City Historic Commission retained the services of Donna Hartmans of Arrow Rock Architects to perform a reconnaissance-level survey of a study area bounded on the north by Fort Street, on the south by Jefferson Street, on the east by 1st Street, and on the west by 16th Street. The purpose of the survey was to determine which properties were historically significant and to propose boundaries for a potential locally-designated historic district. Established in 2004, the Hays Street Historic District comprises almost a twenty-two block area within the surveyed area. The properties within the 100-block study area were within the survey boundaries but were not included in the formation of the historic districts. All of the properties within the 100-block study area are classified as “contributing in a potential district,” with the exception of 111 and 115 W. State Street and 414 N. 2nd Street, which are classified as “non-contributing.” Properties located at 115 and 121 W. Jefferson Street and 124 W. Bannock Street were not included in the 1997 survey.

Boise City defines a historic property as “a district, site, building, structure or object that is eligible or listed on the National Register of Historic Places.” The term contributing is defined as “a contributing building, site, structure, or object that adds to the historic architectural qualities, historic associations, or archeological values for which a property is significant because (a) it was present during the period of significance, and possesses historic integrity reflecting its character at that time or is capable of yielding important information about the period, or (b) it individually meets the National Register eligibility criteria.” The term noncontributing is defined as “a noncontributing building, site, structure, or object that may possess characteristics that make it important to the overall historic character of the district such as, but not limited to, mass, scale, streetscape features, setbacks or proximity to contributing structures. A building, site, structure or object within a district may be noncontributing because (a) it was not present during the period of significance, (b) due to alterations, disturbances, additions, or other changes, it no longer possesses historic integrity reflecting its character at that time or is incapable of yielding important information about the period, or (c) it does not individually meet the National Register eligibility criteria.”

The National Register of Historic Places is an official listing of historically significant sites and properties throughout the country. It is maintained by the National Park Service, U.S. Department of the Interior. To be considered eligible, a property must meet the National Register Criteria for Evaluation. This involves examining the property’s age, integrity, and significance.

Age and Integrity - Is the property old enough to be considered historic (generally at least 50 years old) and does it still look much the way it did in the past?

Significance - Is the property associated with events, activities, or developments that were important in the past? With significant architectural history, landscape history, or engineering achievements? Does it have the potential to yield information through archeological investigation about our past? Does it possess the integrity of location, design, setting, materials, workmanship, feeling and association?

PROCESS OF EVALUATION

This architectural survey involved evaluation of information contained in the 1997 survey report, previously referenced, and existing conditions through field work conducted along the streets systematically in a property-by-property fashion. Field work involved a visual observation of the individual properties to determine if physical changes had occurred since the earlier survey work that could potentially change the property’s significance and integrity. An interior review of a building was performed if the exterior integrity of the building was relatively intact. Research was conducted on properties not included in the 1997 survey through examination of Sanborn Fire Insurance Maps, building permits and resources available at the State Archives.

DETERMINATION

Of the properties within the study block area, all have achieved consideration for historic eligibility based on the 50 years or older criteria with the exception of the previous mentioned properties, which were classified as noncontributing in the 1997 survey based on an age of less than 50 years. Those properties (111 and 115 W. State Street) are still not eligible based on the 50-year consideration.

Although the Aldecoa House, located at 190 W. Jefferson Street, was originally constructed between 1912-1949, thus satisfying the 50 years or older criteria, the property was moved from its original location (212 E. Idaho Street) to its current location during the mid-1980s. Typically, properties that are moved are not considered eligible. They may become eligible for consideration once they have achieved the 50-year mark in their current location.

For a property to be considered historically significant it must not only be shown to be significant under the National Register criteria, but it also must have integrity. Determining integrity is based on the judgment of the consultant as the evaluation of integrity is

St. Luke’s facility historic relocation site plan.
Architecturally, the study block consists of modest examples of study block area were associated with an important person in Boise’s during this survey, there is no indication the properties within the Based on previously published information and research completed just a few.

The fifteen properties located within the block study area are located within the boundaries of the original Boise City Townsite of 1867. The study block area is identified as Block 61 of the 140 block plan. The historic context of this particular block area is the residential development pattern that occurred after the 1890s. This pattern of development was not isolated to this particular block, but typical to surrounding blocks as well. The development of the original platted townsite for residential purposes is integral to the understanding of the history of Boise, but does not represent an important aspect or event of its history.

The block study area and surrounding neighborhood historically was developed as residential uses; single-family residences and apartment houses were prevalent throughout the area with residents of varied socio-economic levels. Over the past 40 years, the greater neighborhood has seen a shift from primarily residential to office, and business-type uses. Many of the existing houses were simply converted into offices or were demolished to provide for new construction (111 and 115 W. State Street, 166 W. Jefferson Street). As part of the change to a commercial use, the setting and character of the area was altered; large parking areas were provided off of the alleys, side and back yards were modified, and in some cases parking lots were developed in the front of the property, all of which diminish the residential character original to the area. There are several structures that maintain residential uses (412 and 414 N. 2nd Street and 117 W. State Street). Current zoning of the study block is H-S (Health Service) with surrounding blocks zoned as R-O (Residential Office) and R-3 (Multi-Family). The residential setting and feeling associated historically with this area is no longer existent and potential development and uses allowed under the current zoning classifications do not support the retention or increase in residential uses.

The property at 124 W. Bannock may be worth additional study as it is associated with J. O. Jordan, a predecessor to the Jordan-Wilcomb Construction Company. J. O. Jordan was founded in the early 20th century and during their early years in business they constructed houses designed within their own company that were based on plan books published during that time. They went on to become a major construction firm contributing to the built environment of present-day Boise, constructing significant structures. The Egyptian Theater, schools for Boise School District, and St. Mary’s Catholic Church are just a few.

Based on previously published information and research completed during this survey, there is no indication the properties within the study block area were associated with an important person in Boise’s history. None of the properties are known to be associated with or designed by one of Boise’s noted architects or architectural firms. Architecturally, the study block consists of modest examples of particular architectural styles; Queen Anne, Bungalow and Colonial Revival. The detailing and character is common throughout the older neighborhoods of Boise. The exterior character remains essentially intact for most of the properties, but with the conversion from a residential to office use the interiors have been remodeled to where very little of the original architectural character, arrangements of spaces, or surface materials still exists. There are exceptions, as the Bishop Foote House has retained much of the historic character and features in the interior of the main floor.

It is judged by the consultant that the historic context associated with the study block area is not considered significant to the history of Boise. Several properties within the study block area are associated with historic architectural character of the development period to which they are associated, but are not exceptional examples of a particular architectural style or work designed by an important architect. Although these structures may retain much of their original character and detailing, the use, site, and setting are no longer associated with the historical residential use of the property.

On June 16, 2014, St. Luke’s presented the historic assessment to representatives from local, state, and national historic organizations. Outcome from the meeting included expanding the scope of the survey, mutual agreement to explore relocation solutions beyond demolition, as well as a plan for further engagement. As the planning process progresses, further details regarding each structure can be explored, including donation and relocation to other properties.

6.2 RELOCATION OF EXISTING BUILDINGS

In June of 2014, St. Luke’s hosted a presentation focused on the Survey of Historic Significance included in this plan to several representatives from historic preservation focused agencies. Participants included: Preservation Idaho, Idaho State Historic Preservation Office, Heritage Trust, National Trust for Historic Preservation, City of Boise Department of Arts and History, and the City of Boise Historic Preservation Commission.

Although the survey did not support the properties as meeting requirements for consideration as historically significant, there was strong sentiment focused on trying to preserve some of the structures in place, or to preserve with purpose on alternate receiving sites. The group suggested looking at collecting several of the properties on the existing surface parking lot located at Second Street between Bannock Street and Idaho Street. Unfortunately, the parking lot serves the patients of the Anderson Plaza Medical Office Building and could not be repurposed without significant expense.

Better understanding the concerns of the group, St. Luke’s agreed to explore suggestions from the discussion and engage in further discussion with the group. While the group has not yet reconvened, St. Luke’s has identified a possible relocation strategy for several structures on properties it currently holds along Avenue B, between Warm Springs Boulevard and Bannock Street. Conceptually, the new existing structures would be removed, allowing selected structures currently located in the footprint of the master plan to be relocated and repurposed. If acceptable, the solution will provide an opportunity to create a strong street presence by redeveloping the frontage and increasing density. To make the most of the opportunity and to preserve the ability to relocate as many structures as possible, St. Luke’s will request a rezone to H-S zoning designation.

To determine which properties are candidates for relocation, St. Luke’s will ask participants from the previous discussion to participate in a selection process. The following plan and images illustrate the concept. The properties represented are only for discussion.
7.0 TRANSPORTATION ANALYSIS

7.1 EXISTING CONDITIONS

The existing roadway system serving the area is described as follows:

- Avenue B is a minor arterial with four lanes with left-turn lanes at intersections and a traffic signal at Jefferson Street.
- State Street is a two-lane minor arterial (to 15th Street) that terminates at Fort Street/1st Street. A traffic signal exists at this location and just beyond the study area at 5th Street.
- Fort Street is an urban two-lane collector located northwest of the area. Traffic signals exist at Washington Street/Robbins Road and 5th Street.
- Main Street and Idaho Street are one-way minor arterials that converge at Broadway Avenue/Avenue B/Warm Springs Avenue with a traffic signal at their intersection.
- Broadway Avenue is a multi-lane minor arterial that terminates at the previously noted intersection. It becomes a principal arterial south of Front Street.
- Warm Springs Avenue and Jefferson Street are two-lane minor arterials.
- Reserve Street and 1st through 4th streets are two-lane urban collectors.

Within the roadway network, several intersections were targeted for detailed review as part of the traffic analysis effort. This proposed study area was reviewed and accepted by ACHD prior to study development.

A thorough data collection effort was undertaken to establish baseline traffic conditions. Existing turn movement counts (TMCs) were collected at key intersections for both the A.M. and P.M. peak hours. To capture peak-hour conditions, counts were recorded during the weeks of April 23, 2013, and April 30, 2013, from 7:00 A.M. to 9:00 A.M. and from 4:00 P.M. to 6:00 P.M. TMCs available through ACHD’s existing traffic count database were used to supplement this data. As existing counts were recorded over a span of several days and by different sources, some data balancing between intersections was necessary to establish baseline traffic conditions within the study area.

The proposed closure of Jefferson Street will reroute both through and local access traffic. To quantify the amount of through traffic that would be diverted, an origin-destination study in the form of balanced link volume projections require some post-processing to arrive at forecast turn movement conditions. These procedures follow the methodologies presented in the National Cooperative Highway Research Program (NCHRP) Report 255. Year 2035 peak-hour model link volumes were compared to the existing model results to determine relative differences in link volume (deltas) for each period. These deltas were then applied to the existing balanced ground count, as established above, entering/exiting link volumes at each intersection to determine 2035 link volumes.

7.2 FORECAST NO BUILD CONDITIONS

For purposes of developing future traffic condition, forecast model data were requested from the Community Planning Association of Southwest Idaho (COMPASS) for the 2012 (existing) and 2035 forecast year periods. COMPASS link volume projections require some post-processing to arrive at forecast turn movement conditions. These procedures follow the methodologies presented in the National Cooperative Highway Research Program (NCHRP) Report 255. Year 2035 peak-hour model link volumes were compared to the existing model results to determine relative differences in link volume (deltas) for each period. These deltas were then applied to the existing balanced ground count, as established above, entering/exiting link volumes at each intersection to determine 2035 link volumes. The Furness Method was then used to derive forecast turn movements (without the proposed development) using the balanced existing turn movement volumes and the calculated future link volumes. 2024 No Build volumes were interpolated from the existing and 2035 No Build volumes.

7.3 FORECAST BUILD CONDITIONS WITH ST. LUKE’S DEVELOPMENT

Site traffic generation is estimated by procedures recommended in the latest edition of the Trip Generation Manual (8th Edition) published by the Institute of Transportation Engineers (ITE). The trip rates are estimated from actual site studies performed on a nationwide basis and are representative of the St. Luke’s facilities based on past traffic impact studies. As indicated previously, two development scenarios are proposed, including a 2024 interim condition and a 2035 full build condition. The interim 2024 condition assumes full buildout of the development with approximately 70 percent occupancy. The following trip generation conditions are applicable for the 2035 condition:

<table>
<thead>
<tr>
<th>Children’s Pavilion - Medical Office Building</th>
<th>Gross Trip Generation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land Use</td>
<td>A.M.</td>
</tr>
<tr>
<td>Medical Office Building</td>
<td>85,000 square feet</td>
</tr>
<tr>
<td>(ITE 720)</td>
<td></td>
</tr>
<tr>
<td>Existing Medical Office Building</td>
<td>6,790 square feet</td>
</tr>
<tr>
<td>NET</td>
<td>178</td>
</tr>
</tbody>
</table>

The trip generation was reduced to reflect the trips generated by the existing Medical Office Building on the site.

The Shipping and Receiving office building provides services for hospital operations and distribution. It is assumed half of the trips occur during off-peak time periods. The trip generation was reduced accordingly. In 2024, the Children’s Pavilion and Shipping and Receiving offices are assumed to be completed. These two land uses assume the same trip generation as the 2035 summarized above. Approximately 63 percent (225,000 square feet) of the hospital tower is assumed to be occupied in 2024. Based on this assumption, 328 A.M. trips and 362 P.M. peak-hour trips will be generated in this year.

The Warm Springs Medical Office Building will provide physician offices, exam facilities, and minor outpatient services. Trip rates will be consistent with those established for the Children’s Pavilion.

At 2035 full buildout, total trip generation is as follows:

<table>
<thead>
<tr>
<th>Warm Springs Medical Office Building</th>
<th>Gross Trip Generation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land Use</td>
<td>A.M.</td>
</tr>
<tr>
<td>Medical Office Building (ITE 720)</td>
<td>100,000 square feet</td>
</tr>
</tbody>
</table>

The 357,000-square-foot hospital development will include various services such as a heart/vascular center, a women’s center, and surgery. The development is considered to generate new trips based on the additional square footage.
A traffic operations review of roadway segments and intersections within the project study area was conducted for each analysis. A traffic operations review of roadway segments and intersections was defined in terms of the average control delay per vehicle. Another measure of performance is the volume to capacity (v/c) ratio. For signalized intersections, the maximum acceptable overall intersection v/c ratio is 0.90. The intersection v/c ratio for roundabouts and unsignalized intersections is undefined by the Highway Capacity Manual; therefore, review by lane group is necessary. The maximum acceptable lane group v/c ratio for signalized and unsignalized intersections is 1.0, and 0.85 for roundabouts.

Roadway Segment and Intersection Traffic Operations Review

<table>
<thead>
<tr>
<th>Location</th>
<th>Analysis</th>
<th>Scenario</th>
<th>Threshold Exceeded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Street</td>
<td>Segment</td>
<td>Existing, 2024 No Build, 2024 Total, 2035 Total</td>
<td>LOS D</td>
</tr>
<tr>
<td>Fort Street, 1st Street to 4th Street</td>
<td>Roadway</td>
<td>Operations</td>
<td>Defined, Existing v/c ratio (WB LT)</td>
</tr>
<tr>
<td>Fort Street and Reserve Street</td>
<td>Intersection</td>
<td>Operations</td>
<td>Defined, Existing v/c ratio (WB LT)</td>
</tr>
<tr>
<td>State Street, 1st Street to 5th Street</td>
<td>Roadway</td>
<td>Segments</td>
<td>Defined, Total LOS D</td>
</tr>
<tr>
<td>Broadway Avenue/Ave B, Front to Bannock</td>
<td>Roadway</td>
<td>Segments</td>
<td>Defined, 2035 No Build, 2035 Total</td>
</tr>
<tr>
<td>Broadway Avenue and Front Street</td>
<td>Intersection</td>
<td>Operations</td>
<td>Defined, 2035 No Build, 2035 Total</td>
</tr>
<tr>
<td>Ave B/Fort, Bannock to 1st Street</td>
<td>Roadway</td>
<td>Segment</td>
<td>Defined, 2015 Total</td>
</tr>
<tr>
<td>2nd Street and Main Street</td>
<td>Intersection</td>
<td>Operations</td>
<td>Defined, 2015 Total</td>
</tr>
<tr>
<td>1st Street/Fort Street/State Street</td>
<td>Intersection</td>
<td>Operations</td>
<td>Defined, 2015 Total</td>
</tr>
<tr>
<td>Avenue B and Jefferson Street</td>
<td>Intersection</td>
<td>Operations</td>
<td>Defined, 2015 Total</td>
</tr>
<tr>
<td>Avenue B and Bannock Street</td>
<td>Intersection</td>
<td>Operations</td>
<td>Defined, 2015 Total</td>
</tr>
</tbody>
</table>

Threshold criteria were exceeded at several locations throughout the study area. When threshold criteria were exceeded, improvement options were considered to resolve or enhance traffic operations to acceptable conditions, or to the extent practical. As a result of this review, locations requiring some level of improvement are summarized in the previous table.

7.5 AVENUE ‘B’ LANE REDUCTION INVESTIGATION

At the request of City staff, St. Luke’s has tasked CH2M Hill traffic engineers to perform a detailed engineering analysis of the Ave B/Fort Lane Reduction alternative. This report is included in this submission within the appendix. The report clearly concludes that any benefit to the surrounding neighborhood relative to bicycle and pedestrian circulation, would be greatly overwhelmed by the negative impacts on vehicular level of service, congestion, air pollution and emergency response time. It is St. Luke’s position, that these negative impacts would have a dramatically negative impact on our ability to serve patients and the community, and therefore advancement of this alternative cannot be supported for further consideration.

It is also St. Luke’s opinion, the proposed Fort Boise Transportation Plan developed jointly by the City of Boise, ACHD and St. Luke’s will achieve many, if not most of the benefits desired by the majority of stakeholders who provided valuable input throughout the extensive public outreach process. These benefits include:

1. Increased traffic safety
2. Improved traffic operations and circulation
3. Traffic calming (reduced vehicle speeds)
4. Increased bicycle and pedestrian safety
5. Increased bicycle and pedestrian alternative choices
6. Opportunities for enhanced green space and streetscape amenities

As stated previously, St. Luke’s is committed to working with the City of Boise, ACHD and community stakeholders to implement transportation solutions that greatly enhance the transportation experience for all stakeholders.
7.6 MULTIMODAL TRANSPORTATION

The St. Luke’s campus and surrounding area are served by the ValleyRide transit system. ValleyRide connects users between Canyon and Ada Counties and within the counties, focusing on downtown areas. From a sustainability standpoint, St. Luke’s downtown facilities provide a high amount of connectivity, access, and transportation opportunities for employees and Treasure Valley residents. By nature of its location and support of alternative transportation, growth in this location could help reduce emissions from single occupant vehicle travel created by distant or less connected facilities.

Transit in the St. Luke’s area generally consists of the bus, though ValleyRide also offers ACCESS, a paratransit service to complement the regular bus system. ACCESS is available to people not able to use the bus system because of disability. The primary service route consists of a loop serving the St. Luke’s and Boise Veterans Administration Medical Center and then extending out to Cootson Street on the Warm Springs corridor. The service runs every 30 to 60 minutes.

The staff at Valley Regional Transit (VRT) have expressed no concerns regarding the proposed changes at the campus. They have requested an opportunity to review the approved master plan in order to finalize bus stop locations with the design team at the appropriate phase of the project and to ensure proper design parameters that support the access of buses and paratransit vehicles are being used in the design process. Based on the proposed configuration of the St. Luke’s facility expansion, the existing bus stops can remain effective in their approximate current locations along First Street.

The following commuter benefits are provided:

Bus Riders
St. Luke’s maintains a contract with ValleyRide so that an employee’s ID badge is a FREE bus pass to anywhere on the ValleyRide route system. Employees simply show their ID badge to the driver upon boarding the bus.

Vanpool
Joining a Commuteride vanpool allows employees to ride free for the first month. After that, St. Luke’s issues monthly commuter checks for $24 to apply toward vanpool fare. In addition, new riders are eligible for $20 Transi-Check coupons during their second, third, and fourth months. These provide an additional $20 off of the vanpool fare.

Carpool
A carpool consisting of two or more St. Luke’s employees is eligible for a discounted parking rate in the South Tower garage at the Boise location. Each party pays $20 monthly, via payroll deduction. One parking permit (mirror hanger) is issued for the parties to share.

Guaranteed Ride Home
All participants in the ETA program are eligible for the Guaranteed Ride Home (GRH) program. This allows for a free taxi ride home in the event of an emergency or schedule change on a day an employee didn’t drive. Guaranteed Ride Home covers six taxi rides or $300 in taxi fares each year.

Bicyclists
Employees who bicycle to work at least 60 percent of the time between May 1 – October 31 receive a coupon worth $40 to a participating local, full-service bike shop. This amount may be applied toward tune-ups, repairs and/or merchandise. Secure bicycle parking, in line with sustainable best practice, is available at both the Boise and Meridian facilities. St. Luke’s also provides lockers and showers to further encourage alternative transportation by its employees.

Walkers
Employees who walk to work at least 60 percent of the time year round receive a coupon worth $25, twice a year, to a participating local walking/running store.

Additionally, St. Luke’s is a prominent sponsor of the Boise Bike Share program. Furthering St. Luke’s commitment to create a healthy and sustainable lifestyle for Treasure Valley residents, the program will be a division of Valley Regional Transit and have a network of bike borrowing hubs in several locations throughout downtown, including one on the St. Luke’s campus.

Other alternative transportation methods are also being considered by the City. A community workshop was held for residents to give their input on a downtown circulator intended to provide better connection to downtown and destinations around the city. It is St. Luke’s intention to continue to consider support of new public transportation systems as they develop.

7.7 EXISTING BICYCLE VOLUMES

Bicycle and pedestrian counts were taken at several different dates throughout project development. Figure 1 provides a summary of these counts and records the dates. Morning counts were obtained between 7:00 A.M. and 9:00 A.M., and evening counts were obtained between 4:00 P.M. and 6:00 P.M.

Figure 2 shows overall bicycle-only volumes (no pedestrians included) from Pine Engineering, Inc. and a bicycle-specific count by CH2M HILL on August 28, 2013. Bicycle counts were also conducted by the Treasure Valley Cycling Alliance and are included in this figure. Count times were 7:00 to 9:00 A.M. or 4:00 to 6:00 P.M. as noted. The numbers represent cyclists approaching the intersection from all directions.

The August 28, 2013, CH2M HILL bicycle-specific count was focused solely on cyclists commuting to and through the St. Luke’s campus, along Jefferson Street in particular. Figures 3 and 4 show the total number of riders in the intersections, including approaches from all directions, as well as the number of riders who passed all the way through the hospital facility on Jefferson Street. The definition used for “bicycles” was between the east side of the intersection of Jefferson Street and 2nd Street to the west side of the intersection of Jefferson Street and Avenue B. The figures are split between morning and afternoon peaks; as with the overall counts above, the counts were recorded from 7:00 A.M. to 9:00 A.M. and from 4:00 P.M. to 6:00 P.M.
In both the morning and evening, fewer than 1 in 6 riders passed through the facility on Jefferson Street. Many riders entered the campus on Jefferson Street and stayed, while others may have turned north or south within the facility to reach either another local hospital destination or a destination outside of the facility, but presumably not along Jefferson in the downtown core.

This trend seems to match with the findings of Figure 2 of the originally approved DBIP in fall of 2013, and incorporated in “Preferred Bicycle Routes,” located on this page. This figure was developed during one of the open house events for the project. The figure shows the currently preferred routes of cyclists. Interestingly, Jefferson Street through the hospital facility was not identified at all during this exercise.

Several popular moves were noted during the counting period on August 28, 2013. They are as follows:

- The right turn movement for northbound cyclists on 1st Street is significantly higher in the afternoon (16 instead of 1). Input from several cyclists indicated that due to the current one-way traffic on Jefferson, they return to the East End via Bannock Street until they reach 1st Street, where they can access Jefferson Street as a two-way street.

- A significant number of cyclists, 19 in the morning and 29 in the afternoon, navigated around the northeast corner of Jefferson Street and Avenue B/Fort Street, behind Jefferson Medical Office Plaza. In the morning, the cyclists moved generally westbound to northbound on Fort Street, while in the evening, the cyclists navigated from southbound on Fort Street to eastbound on Jefferson Street.

- North-south movement on Avenue B at Jefferson Street is one of the more heavily used moves, with 18 cyclists traveling through the intersection in the morning and 30 traveling through in the evening.

Other general observations that were made during the count period include:

- Many cyclists on the north side of Jefferson Street (typically westbound) use the sidewalk for safety and to push the pedestrian signal button.

- A.M. cyclists generally include elementary, junior high, and high school students, and adults commuting to work.

- Getting a walk/green light to cross Avenue B was slow; many pedestrians push both Jefferson Street and Avenue B “Walk” push buttons in order to get the quickest one.

- A potential conflict exists between southbound Fort Street drivers turning left onto Jefferson and northbound cyclists on Avenue B — vehicles have flashing yellow arrow; cyclists have green light or walk sign.

Other general observations from the DBIP exercise effort include:

- Jefferson Street through the campus was not identified as a preferred route.

- No preferred route seemed to include a continuous north-south or west-east distance completely through the downtown study area.
7.8 CIRCULATION

St. Luke’s Boise facility serves as a regional destination for patients and visitors. As such, connectivity and access to the facility and its front door is of the utmost importance. The current vehicular and bicycle circulation network consists of minor arterials bordering the east and south edge of the facility, providing expedient vehicular access, with urban collectors serving the facility interior and west edge. Pedestrian access is facilitated by a complete sidewalk and crosswalk network to and through the current facility. For safety reasons, the framework effectively limits internal vehicular traffic within the interior of the site and thus limits the opportunity for pedestrian-vehicular conflict, increasing the safety of facility users and visitors.

Originally adopted in the fall of 2013, the Downtown Boise Implementation Plan will coordinate major roadway improvements in the area of downtown Boise from 16th Street to Broadway/Avenue B, and State Street to the Boise River. Recommended improvements include conversion of several of Boise’s one-way streets to two-way, intersection improvements, as well as expanded and enhanced pedestrian and bicycle facilities. The approved DBIP favored with the most current information is being used in this plan.

St. Luke’s facility is located at the eastern edge of the plan study area. As illustrated in the images to the left, specific impacts to the area include conversion of Jefferson Street west of 1st Street to two-way traffic, similar to Jefferson Street east of 1st Street. The original DBIP includes the existing shared lanes on Bannock, plus the shared lanes on Idaho, Main and State streets, as well as a bike lane on Jefferson; basically covering all east-west connections.

The following discussion includes the addition of buffered bike lanes along Idaho and Main streets from Warm Springs Avenue to the west, and a standard bike lane along Avenue B from Warm Springs Avenue to Jefferson Street. ACHD conducted a buffered bike lane pilot project during the month of May. The results of that project are still being evaluated. Without more definitive information, this plan presumes that some form of bike connectivity will exist on Main and Idaho streets as shown in both the approved and updated DBIP discussions. The addition of buffered bike lanes along the Idaho and Main corridors will affect current on-street parking availability; however, the impacts to St. Luke’s can be mitigated through additional capacity added as part of this master plan.

In addition, the DBIP identifies shared bicycle routes, where bicyclists and motorists share the same lane, along Fort Street between Avenue B and 1st Street and continuing along State Street to 8th Street. Shared space along vacated Bannock Street between St. Luke’s main entrance on East Bannock Street and 1st Street is also proposed. The latter is plaza area owned by St. Luke’s and is located between St. Luke’s South Tower and the main hospital. The area presents challenges to commuter cyclists today, due to the geometry of hard surfaces, pedestrian cross-traffic, and patient-family relaxation space. St. Luke’s has engaged with stakeholders, including area cycling groups, to assess mitigation strategies to benefit both pedestrians and cyclists.

In an effort to more fully understand future uses of the Bannock Street Corridor as it relates to public use St. Luke’s hosted a focused workshop facilitated by a third party expert on March 16, 2015. Stakeholders included area cyclists, East End Neighborhood representatives, ACHD, the City of Boise, and Boise Green Bike. The workshop provided the opportunity to explore whether enhancing cycling opportunities, opening the plaza back up to automobile use, or leaving the plaza was most appropriate.

Those in attendance came to consensus that Bannock could be redesigned to better facilitate slow-moving bicycle traffic through the area, but as a secondary use, giving pedestrian traffic priority. It was also concluded reintroduction of automobile traffic through the area was not appropriate. However, the City of Boise will require
additional study and engagement through a series of meetings and planning sessions, and per the Conditions of Approval a 28-foot wide easement shall be preserved for public access, as well as construction of a 10-wide dual use pathway as depicted shall be constructed.

An additional request from the neighborhood meetings revolved around the use of Jefferson on weekends to capture non-commuters, including in particular the Saturday Market users. In response, St. Luke’s conducted an additional bike count and conducted a survey of bike users on Saturday, May 17, from 9 A.M. to 2 P.M. This timeframe captured weekend, family-oriented cyclists generally found to be using Jefferson Street to access the Saturday Market. Because those are weekend users and not representative of the peak hour commuter cyclists counted previously, their numbers (similar to commuter peak hours) were not included in previous tables. Detailed information on the count and survey response is provided in the Traffic Impact Study.

Bridging Avenue B from the east side of Bannock west over the plaza to 1st Street was reviewed, but was found to be in conflict with the future sky bridge from the existing hospital to MSTI.
7.9 PARKING ANALYSIS

St. Luke’s Medical Center has hired Walker Parking Consultants to prepare a Parking Demand Analysis for their main facility, located in downtown Boise. This report addresses the existing parking needs for the hospital, using two different approaches:

7. Parking spaces required by City Code, and
8. Parking spaces needed based on the observed current usage (with an appropriate adjustment for the design day).

This analysis also provides a review of this master plan and projects possible future parking needs based on the revised 2030 build-out horizon.

Parking Required by Code

Parking required for the facility may be subject to some interpretation, as different buildings may be located outside of the overlay zone, and/or may fall under older code standards or variances which have been grandfathered in. Based on Walker’s interpretation of Title 11, the following has been concluded:

- The existing facility includes a total of 3,206 parking spaces located in lots and garages within the study area. This figure excludes an estimated 528 public on-street spaces located within 1-2 blocks from the campus;
- The off-street parking capacity is compared to an estimated minimum code requirement of 1,319 parking spaces;
- The estimated code requirement for the hospital includes roughly 474 parking spaces that are located outside of the “core” hospital zone and includes parking at various clinics, medical office buildings, and ancillary support facilities. Each of these facilities is assumed to meet its own code requirement on site.

Parking Recommended Based on Usage

To determine existing parking usage, Walker conducted a facility-wide parking occupancy survey on Wednesday, July 10, 2013. Results were compared to historical parking occupancy data from 2001 and 2005. The survey day results were also adjusted (based on hospital-provided statistics) to model an appropriate design day, which is defined as the 95th percentile day in terms of overall facility activity.

Based on this analysis, Walker concludes that the existing system has an effective surplus of roughly 213 spaces for the core campus and 394 parking spaces overall. This surplus excludes any overflow capacity available on the streets surrounding the facility. The calculated effective parking sufficiency by user group is listed below:

- Core hospital employee parking = 85 space surplus
- Core hospital visitor/patient parking = 128 space surplus
- Ancillary lots (all) = 181 space surplus

Clearly, parking for the core hospital zone - which includes the hospital itself, Anderson Medical Plaza, St. Luke's Medical Office Plaza, and St. Luke’s Mountain States Tumor Institute - has less overall sufficiency than the ancillary buildings. Though not currently showing a deficit of parking, employee parking facilities for the core hospital are close to effective capacity.

Projected Future Parking Needs

Walker reviewed the build-out plan for the facility, including the proposed master plan and capital projects projected through 2030. Based on assumptions provided by the architect and planning team, Walker recommends that the following parking capacity be added to the facility to support projected growth.

Keep in mind that the “net” parking recommendations above do not factor in any surface parking lots that may be displaced as part of the building process. Therefore, future garage sizes may need to be somewhat larger than the totals indicated below, if any of the existing facility parking capacity (2,732 spaces) is impacted.

| STUDY AREA |

The study area for this project includes all off-street parking associated with the St. Luke’s Boise facility, plus any St. Luke’s clinics, support buildings, and/or medical office buildings (MOBs) located within 1 to 3 blocks of the main hospital building. The adjacent figure shows the study area for this project.
8.0 RECOMMENDED DISTRIBUTION OF USES

8.1 EXISTING ZONING ORDINANCE

St. Luke’s is bounded by a Residential Office zone to the west and south, Parks and Open Area to the north, Combined Residential and Multi-Family Residential to the east. St. Luke’s facility is zoned as Health Service. There are no perceived non-conforming uses being envisioned as part of the proposed master plan.

However, at the request of the City, St. Luke’s has assessed current H-S zoning requirements in the context of anticipated development needs and perceive some challenges with current dimensional requirements related to maximum height and setbacks. If this plan is approved, it is St. Luke’s intent to engage with the City to explore each challenge and offer recommendations for revisions consistent with other local adopted zones and national best practices. In addition, St. Luke’s currently owns properties on the north side of Jefferson east of Avenue B and on the east side of Avenue B north of Warm Springs it is proposing to be rezoned to H-S.

8.2 EXISTING ADJACENT PROPERTY USES

The property to the north of the hospital grounds is currently occupied by city park facilities, Boise Little Theater and Elks Rehab Hospital. The park and foothills beyond provide viewing opportunities from inpatient areas of the existing hospital.

The neighborhood to the west is reflective of neighborhoods in transition from residential use to more dense and commercial in nature. Many single-family homes have been converted into commercial-use offices, including those directly related to the hospital and its activities.

Uses to the east are primarily residential in nature and range in density from single-family residences to the 9-story Bannock Arms apartment building. Other uses include the historic Pioneer Cemetery located on Warm Springs Avenue.

Uses to the south include a convenience store, chiropractic clinic, and retail store frontage along Broadway Avenue, just south of Warm Springs Avenue. While St. Luke’s currently holds the master lease to the retail store frontage on Broadway, St. Luke’s has decided to release the lease in response to residents’ interest in seeing retail services close to their homes restored.
8.3 MASTER PLANNED DISTRIBUTION OF USES

The proposed facility plan is a continuation of established best practice hospital facility planning. Careful study shows today’s hospital and cadre of ancillary facilities has followed a similar hub and spoke development model throughout its history. In concept, the inpatient functions and highly specialized care occur at the center, or in the hospital proper with ancillary and support functions, like parking facilities, building services and medical office buildings, concentrically located at the periphery.

This arrangement allows convenient public and outpatient access to the higher-activity, more frequently used functions associated with and housed on the grounds of the hospital without having to penetrate deep into the heart of the development. Items such as physician offices and outpatient imaging and testing are located conveniently at the edge with immediate access to parking, major streets and transit facilities. Inpatient functions, typically characterized by longer lengths of patient stay and acute care involving more staff and more equipment, occur at the center of the facility.

The needs articulated in this master plan require large unobstructed floor plates to grow existing departments and to better address critical interdepartmental adjacencies that are currently challenged. In the case of St. Luke’s, the option for expansion within the existing city block grid system is not realistic without street reclamation, which allows for larger contiguous floor plates, in turn allowing a more efficient growth model.

By allowing vehicular access at the edge and limiting through traffic, the potential for pedestrian/vehicular conflicts is reduced and internal hospital transport of compromised patients can occur horizontally in a controlled healthcare environment without having to traverse streets, either by traveling via elevator and sky bridge, or cross at street level.

8.4 EXISTING & PLANNED FACILITY ZONES

In addition to planning concerns expressed in the previous section, consideration is also given to respect the livelihoods of the facility’s neighbors by organizing hospital activities in a complementary fashion. In looking at the way the current facility is organized, the observation can be made that the more regular business hour operations happen adjacent to the more residential neighbors and the more 24-hour functions occur either at the center of the development buffered by those that cease to operate in the evening, or adjacent to non-residential neighbors, like the park and businesses to the north.

The benefits of such planning concepts mitigate obtrusive noise caused by around the clock operation and emergency services, as well as excessive traffic on neighborhood streets, and parking lot lighting that can be zoned to be turned off after a certain time of night to prevent unwanted nighttime light intrusion.

As the diagrams indicate, the proposed organization continues this approach. Emergency traffic, such as ground ambulance and activities will continue to be accessed from Jefferson and Avenue B. The main Emergency Department public entrance and drop-off will continue to be accessed as it is today. The expanded diagnostic and treatment areas, and inpatient beds, would unfurl to the north, adjacent to the park and neighboring businesses. New outpatient functions, central plant, and supporting parking facility will be located to the northwest, abutting mixed residential and office uses.
To offset the potential delay of bicyclists having to navigate around the hospital development, where accommodations are very minimal or non-existent, more efficient options are being explored to improve bicyclists’ experience as well as encourage use of facilities instead of riding in the streets or on sidewalks. These facilities could be located on the edge of the hospital grounds so the interior streets and paths are used by local traffic, which will reduce the number of conflicts and delays for all modes of transportation.

The proposed approach includes shared lanes and bike lanes. The latter is similar to others around the city and is used exclusively by bicyclists and may be wide enough for bicyclists to ride side by side. The idea behind the bike lane is to provide a safer alternative to riding on busy arterials, which see more than 20,000 vehicles per day. The design standard for a bike lane is that it flows in the same direction as traffic and is located on the right side of those lanes. Adjacent to the bike lane may either be a raised sidewalk or a parking lane.

The bike lane is designed for users to quickly get from one destination to the other with few interruptions. However, if a bike lane does encounter a driveway or an intersection, proper precautions can be taken to ensure the safety of riders. This can include “yield” signs, painting the bike lane for easy identification, and providing proper visible clearance for motorists and bicyclists. Additionally, the bike lane is at street level, thus there are no bumps for motorists to cross.

It should be noted the installation of the bike lane along State Street and Fort Street would not change the existing curb-to-curb width of those streets, if approved. St. Luke’s would absorb additional lands required as part of the overall project development to facilitate implementation. However, elsewhere where existing buildings are located along the recommended bicycle facilities that make riders’ travel easier and delays for all modes of transportation.

Connections to the west from the facility to downtown would consist of buffered bike lanes on Idaho and Main streets as well as the shared lanes on State Street, according to the approved DBIP.

The bicycle facilities discussed in this document coincide with the proposed expansion of the bicycle network in the approved DBIP, as well as the City’s Conditions of Approval imposed on this plan. Both plans suggest adding bike facilities to State, Main, and Idaho streets - major east-west connections that tie in well with the master plan to create a more fluid appearance around the neighborhood and to add improved amenities for bicyclists and pedestrians.

Another proposed improvement that differs from the approved and updated DBIP is the implementation of micro paths. These paths would create a safe, alternate connection to other pedestrian facilities in the vicinity. The micro paths shown on this page likely to the other with few interruptions. However, if a bike lane does encounter a driveway or an intersection, proper precautions can be taken to ensure the safety of riders. This can include “yield” signs, painting the bike lane for easy identification, and providing proper visible clearance for motorists and bicyclists. Additionally, the bike lane is at street level, thus there are no bumps for motorists to cross.

Connections to the west from the facility to downtown would consist of buffered bike lanes on Idaho and Main streets as well as the shared lanes on State Street, according to the approved DBIP.

The bicycle facilities discussed in this document coincide with the proposed expansion of the bicycle network in the approved DBIP, as well as the City’s Conditions of Approval imposed on this plan. Both plans suggest adding bike facilities to State, Main, and Idaho streets - major east-west connections that tie in well with the master plan to create a more fluid appearance around the neighborhood and to add improved amenities for bicyclists and pedestrians.

Another proposed improvement that differs from the approved and updated DBIP is the implementation of micro paths. These paths would create a safe, alternate connection to other pedestrian facilities in the vicinity. The micro paths shown on this page likely to the other with few interruptions. However, if a bike lane does encounter a driveway or an intersection, proper precautions can be taken to ensure the safety of riders. This can include “yield” signs, painting the bike lane for easy identification, and providing proper visible clearance for motorists and bicyclists. Additionally, the bike lane is at street level, thus there are no bumps for motorists to cross.

Connections to the west from the facility to downtown would consist of buffered bike lanes on Idaho and Main streets as well as the shared lanes on State Street, according to the approved DBIP.

The bicycle facilities discussed in this document coincide with the proposed expansion of the bicycle network in the approved DBIP, as well as the City’s Conditions of Approval imposed on this plan. Both plans suggest adding bike facilities to State, Main, and Idaho streets - major east-west connections that tie in well with the master plan to create a more fluid appearance around the neighborhood and to add improved amenities for bicyclists and pedestrians.

Another proposed improvement that differs from the approved and updated DBIP is the implementation of micro paths. These paths would create a safe, alternate connection to other pedestrian facilities in the vicinity. The micro paths shown on this page likely to the other with few interruptions. However, if a bike lane does encounter a driveway or an intersection, proper precautions can be taken to ensure the safety of riders. This can include “yield” signs, painting the bike lane for easy identification, and providing proper visible clearance for motorists and bicyclists. Additionally, the bike lane is at street level, thus there are no bumps for motorists to cross.

Connections to the west from the facility to downtown would consist of buffered bike lanes on Idaho and Main streets as well as the shared lanes on State Street, according to the approved DBIP.

The bicycle facilities discussed in this document coincide with the proposed expansion of the bicycle network in the approved DBIP, as well as the City’s Conditions of Approval imposed on this plan. Both plans suggest adding bike facilities to State, Main, and Idaho streets - major east-west connections that tie in well with the master plan to create a more fluid appearance around the neighborhood and to add improved amenities for bicyclists and pedestrians.

Another proposed improvement that differs from the approved and updated DBIP is the implementation of micro paths. These paths would create a safe, alternate connection to other pedestrian facilities in the vicinity. The micro paths shown on this page likely to the other with few interruptions. However, if a bike lane does encounter a driveway or an intersection, proper precautions can be taken to ensure the safety of riders. This can include “yield” signs, painting the bike lane for easy identification, and providing proper visible clearance for motorists and bicyclists. Additionally, the bike lane is at street level, thus there are no bumps for motorists to cross.

Connections to the west from the facility to downtown would consist of buffered bike lanes on Idaho and Main streets as well as the shared lanes on State Street, according to the approved DBIP.

The bicycle facilities discussed in this document coincide with the proposed expansion of the bicycle network in the approved DBIP, as well as the City’s Conditions of Approval imposed on this plan. Both plans suggest adding bike facilities to State, Main, and Idaho streets - major east-west connections that tie in well with the master plan to create a more fluid appearance around the neighborhood and to add improved amenities for bicyclists and pedestrians.

Another proposed improvement that differs from the approved and updated DBIP is the implementation of micro paths. These paths would create a safe, alternate connection to other pedestrian facilities in the vicinity. The micro paths shown on this page likely to the other with few interruptions. However, if a bike lane does encounter a driveway or an intersection, proper precautions can be taken to ensure the safety of riders. This can include “yield” signs, painting the bike lane for easy identification, and providing proper visible clearance for motorists and bicyclists. Additionally, the bike lane is at street level, thus there are no bumps for motorists to cross.
Possible intersection improvements at Fort/State Street and 1st Street.

Possible intersection improvements at Jefferson Street and Avenue B.

Possible intersection improvements at Idaho Street and 1st Street.

Possible intersection improvements at Warm Springs/Main/Idaho and Avenue B/Broadway Ave.
9.2 BICYCLE SYSTEM PLANNING ELEMENTS

The bicycle amenities listed below correlate with the illustrations on the previous page. They are being considered to help improve the efficiency and safety of bicyclists who are traveling to, through, or around the St. Luke’s facility. Not all amenities are required, but a combination of them may be used based on the traffic volume of those roadways and on the current/projected number of bicyclists traveling through this end of downtown.

The amenities illustrated have been implemented in various cities across the country and the world, and have proven to be effective. The descriptions of each are taken from the Urban Bikeway Design Guide, created by the National Association of City Transportation Officials (NACTO), which assists in the proper installation of bicycle transportation systems. Some of these amenities also follow ACHD’s bicycle design guidelines in their Roadways to Bikeways Plan.

BIKE LANE

Example of a standard bike lane.

Bike lanes are exclusive travel lanes for bicycles located next to vehicle travel lanes. They typically flow in the same direction as vehicular traffic and are located on the right side of the street.

Bike lane widths may be between 4-6 feet. The bike lane width is exclusive of the gutter. The desirable minimum width is 5 feet if located next to a parking lane, which helps to prevent conflicts between open car doors and bicyclists.

A solid white line should separate the bike lane from the vehicle travel lane. These lines are typically 6-8 inches wide.

A bicycle symbol or the word “Bike Lane” along with an arrow should be placed inside the bike lane to help define the area that is for bicyclists only.

At the beginning of a marked bike lane, a “Bike Lane” sign may be used to help with identification of that lane.

“No Parking” signs may be used to help prevent motorists from parking in a bike lane.

Similar to multi-use paths, which are separated from travel lanes, but are exclusively for bicycle travel. May accommodate one-way or two-way travel. Cycle tracks are preferred in areas that have few driveway entrances as this creates more conflicts with motor vehicles. However, added measures can be taken to ensure the safety of bicyclists.

The bicycle symbol and an arrow should be placed at the beginning of the cycle track and periodically along its path to define the separate bicycle travel lanes and their direction.

A physical median or a striped buffer shall be used to separate the two-way cycle track from vehicle travel lanes, or parking lanes if necessary. The striped buffers are recommended in areas where city buses and shuttles need access to the curb for picking up and dropping off passengers.

SHARED LANE

Example of a two-way cycle track.

Also known as sharrows, these lanes use markings to indicate that the road is a designated bike route and is to be shared by bicycles and motor vehicles. Shared lanes are used on low speed, low volume roads that don’t have enough room to delineate a separate bike lane. They may also be used to help position bicyclists traveling through roundabouts.

The shared markings not only help remind motorists to be mindful of potential cyclists using the road, but also to help properly position cyclists in the lane.

If applicable, the location of the shared markings should be placed far enough away from parked vehicles that cyclists won’t be in the door zone.

BIKE BOX

Example of a bike box.

A bike box is a designated area at the front of traffic lanes at signalized intersections that provides bicyclists with a safe place to merge into traffic from a side of the street. A physical “Bike Box” sign may be used, or the pavement enclosed by the bike box may be painted for greater visibility and compliance by motorists and bicyclists.

A bicycle symbol and an arrow should be placed at the beginning of the bike box.

A stop bar is used to indicate where motor vehicles are required to stop at an intersection.

Proper pavement markings are centered in the bike box to designate the correct space for bicyclists.

A “No Turn on Red” sign may be installed at intersections with bike boxes to prevent vehicles from entering the bike box space.

A “Stop Here on Red” sign may be posted at the stop bar, or the marking “WAIT HERE” may be used in conjunction with the stop bar and/or the posted sign. Both improve drivers’ observance of the stop bar.

The pavement enclosed by the bike box may be painted for greater visibility and compliance by motorists and bicyclists.

A two-stage turn queue box permits bicyclists to make a safe left turn at signalized intersections from a right-side bike lane, or cycle track that prevents bicyclists from merging into traffic to turn. Multiple positions are available for these queue boxes. Typical applications for queue boxes include multi-lane roadways, signalized intersections, and intersections where a significant number of riders make left turns.

Queue boxes should be placed in protected areas such as between a bicycle lane and pedestrian crosswalk. Or they may be placed between the vehicle travel lane and the bicycle lane as long as the queue box doesn’t protrude into the vehicle travel lanes.

Queue boxes have pavement markings that include a bicycle and a turn arrow that indicate the proper direction of travel.

The pavement area within the queue box may be painted to improve visibility for bicyclists and motorists.

If needed, pedestrian crosswalks may be adjusted or realigned to allow space for a queue box.

THROUGH BIKE LANE

Example of a through bike lane.

A through bike lane allows bicyclists to correctly position themselves at intersections. This helps to reduce conflicts with right-turning vehicles. They may also be used to help position bicyclists traveling through roundabouts.
traffic. These lanes are located to the right of through traffic lanes, but to the left of right-turn lanes.

At intersection approaches, the words “Bike Lane” or a bicycle symbol along with a straight arrow should be used to indicate the intended path of bicyclists traveling through the intersection.

Dotted lines should identify the merge area where vehicles transitioning into the right-turn lane cross the bike lane. Depending on the traffic volume, these dotted lines should begin 50 to 100 feet before the intersection.

Through bike lanes should not be used when a through vehicle travel lane turns into a right-turn only lane. This can create greater conflicts between bicyclists and motorists.

Right-turn only lanes should be as short as possible to help reduce the speed of cars in the right-turn lane.

CONFLICT AREA

A conflict area highlights areas of concern at intersections and driveways where bike lanes and vehicle travel lanes intersect. Features include dashed and painted bike transition lanes for greater visibility. Dashed white lines should be used along the edges to distinguish the boundary of the conflict area with the conventional bike lanes.

Green paint may be used within the conflict area to improve the visibility and awareness of intersecting lanes for both drivers and bicyclists.

At the beginning of the conflict areas and at driveway crossings, a “Yield to Bikes” sign may be used to remind everyone that they are approaching a conflict area and bicyclists have the right-of-way.

Bicycle stencils and shared lane markings may be used within the conflict area to better identify the space.

BIKE SIGNAL DETECTION

Bike signal detection systems are used to alert other traffic of bicycle movement at intersections. This may occur by automatic means or by push-button operation. Automatic signal detection can be used in bike boxes, two-stage turn boxes, or even bike lanes approaching intersections. These may also be paired with bicycle-specific signal heads that allow riders priority when traveling through intersections while the light remains red for motor vehicles.

Where used, in-pavement loop detectors should be adjusted to guarantee detection of bicyclists. The loop detectors should be located in the intended travel and/or wait path of bicyclists. This includes in the center of the bike box, the center of the two-stage turn box, in the bicycle approach lane, and immediately behind the stop bar in a bike lane.

Video detection is another source that may be used for automatic detection. Similar to their use for motor vehicles, these cameras are aimed at bike lanes, bike boxes, etc. They are calibrated to detect when a bicyclist is approaching, or when they have stopped in a designated location.

Signs and/or stencil markings should be used to indicate where bicyclists should position themselves at intersections to activate a green light. If push-button activation is used, it should be located in an area that bicyclists can reach without dismounting. A sign indicating the push-button activation should accompany the button.

If a separate bicycle signal head is used, then a supplemental, half-sized signal head may be installed next to the waiting bicyclists for greater visibility and improved awareness.

INTERSECTION CROSSING

Intersection crossing markings may or may not be used, depending on the safety precautions that are to be used at these intersections. They indicate the intended path of bicyclists traveling through intersections, and allow greater visibility, and caution both motorists and bicyclists at these intersections. It also reassures motorists by making bicycle movements more predictable.

The crossing space for bicyclists should be bound by dotted lines that cover the length of the intersection. These lines should also be adjacent to vehicle travel lanes.

The crossing-lane width should match the width and positioning of the leading bike lane.

Additional markings within the dashed lines may be used for greater visibility. These markings include chevrons, shared lane markings, or colored pavement.

COMBINED BIKE/TURN LANE

Intersections that lack proper width for a through bike lane may use a combined bike/turn lane, which features a shared lane marking on the left side of a right-turn lane. This helps to correctly position bicyclists when they are traveling through an intersection. It also gives bicyclists priority in the travel lane.

To help bicyclists and motorists identify a combined lane, shared lane markings should be used near the intersection to delineate the space.

A dashed line may also be used to show where the right edge of the bike lane would have continued. This helps to push motorists further to the right of the turn lane to allow adequate space for bicyclists.

A combined lane may also be used at bus stops when there isn’t enough space for a dedicated bike lane and an adjacent parking/transit lane. It still requires shared lane markings to tell bicyclists and bus drivers to be aware of each other when buses are pulling up to and away from bus stops.

WAYFINDING SIGNAGE

Wayfinding signs should be placed along all bike facilities that are part of the bicycle network. They help guide bicyclists to their destinations and keep them on a designated bicycle route. While all wayfinding signs serve the same purpose, they may vary in appearance and information provided, but contain common elements such as the bicycle symbol.

Confirmation signs simply notify riders that they are on a designated bike route. They typically don’t include destinations or arrows. Placed frequently along a bicycle route, these signs help remind motorists to use extra caution when driving on these roads.

Turn signs let riders know when the designated bike route changes direction, or continues onto a different street. These signs include arrows and may include destinations.

Decision signs inform riders that a junction with two or more bike routes is approaching. Placed in advance of a junction, these signs include destinations, arrows, travel times, and distances.
Possible bike lane with 10-foot sidewalk. View of Fort Street, looking east.

Possible buffered bike lane. View of Idaho Street, looking west.

Possible 10-foot cycle track and 5-foot sidewalk. View of Avenue B, looking north.
STREET SECTIONS

The street sections on this page show examples of how the discussed improvements around the St. Luke’s facility may look. These illustrations depict the existing conditions (top) and the proposed improvements (bottom) of Idaho Street and Avenue B. The section of Idaho Street is based on the DBIP pilot study as it is more conservative to install (more space required, etc). Additionally, the Average Daily Traffic (ADT) for Main Street is 7,591 and 5,063 for Idaho Street; the recommended limit for sharrow facilities is under 3,000 ADT.

As shown in the existing conditions, there currently isn’t a dedicated bike lane, or other bike system marking on any of these streets, so bicyclists are forced to either ride in the unmarked vehicular travel lanes or on the detached sidewalks. With improvements, bicyclists would have dedicated lanes that will help connect them safely to Boise’s existing and proposed bicycle network. These improvements will also increase safety by separating cyclists from traffic and making movements more predictable.

To accommodate a dedicated bicycle lane along Idaho and Main streets, the curb-to-curb width would remain the same, but the on-street parking on one side of each street for several blocks west, would be eliminated. As the DBIP process reaches the next approval stage, and the Downtown Circulator project gains definition, these sections and the necessary crossing can be refined. St. Luke’s is dedicated to working with the community in considering these projects.

As noted above, the proposed Avenue B bike lane and cycle track will efficiently move bicyclists between Fort Street and the Warm Springs Intersection, and beyond. Adding the bike lane within the right-of-way of Avenue B would impact the current location of the curbs and create the opportunity to modify the lane widths.
10.0 RECOMMENDED STREETSCAPE
10.1 LANDSCAPE TREATMENT

The basic premise for the concepts is to identify the properties and make people aware that they are entering St. Luke’s Health System’s Boise location. It is the intent to provide a common theme for all intersections and streetscapes that are functional, attractive, and relatively low in maintenance for St. Luke’s, ACHD, and the City of Boise.

Intersection Concept:

Intersection Concept with Integrated Bus Stop:

At intersections throughout the facility where bus stops are to be located, the planter areas would be eliminated on the side of the ramp where the bus stops are located. All other aspects of the intersection would be consistent with the typical intersection as described previously. The proposed shelter would be consistent with the typical Boise City shelter and as already located at the St. Luke’s facility.

Existing bench and charcoal-colored concrete.

Existing corner landscape treatment consistent with proposed concepts.

Existing Street Tree Concept:

Along streets with existing healthy street trees, it is proposed that three historic street lights be spaced equally between the intersections. At each area where the lights are located are small planter areas on both sides of the sidewalks. These would be planted with perennial and woody plant material to provide color and texture throughout the year and be consistent with the rest of the facility landscape. If existing street trees are in declining health and the Boise City Forester recommends removal, it is proposed that new trees be planted to conform with the New Street Tree Concept.

St. Luke’s shall work with Boise Urban Forestry and Planning & Development Services to design cycle track and other facilities in a manner that preserves existing mature trees and vegetation in the public right of way around the campus perimeter, particularly on 2nd Street where large street trees exist. Building facade modulation, cycle track width or alignment and street sections may be modified on those frontages in return for setbacks that preserve mature trees. If trees are lost, replacement trees of Class 3 or similar.

New Street Tree Concept:

This is consistent with the Existing Street Tree Concept, with the exception that the new trees would be planted between the historic lights. The required number of trees would comply with Boise City Landscape ordinance and City Forester’s recommendations.
10.2 OPEN SPACE & PUBLIC ART

There are many studies and articles available documenting the benefits art has on health and healing. St. Luke’s downtown facility currently has several areas throughout the grounds and internal to the building where art is displayed for the benefits of patients, family, staff and the public. One such example is the Bannock Street plaza.

The area displays sculptures, water features and a labyrinth adjacent to the pediatric infusion play area.

The master plan identifies opportunities where art can be integrated into new open spaces created between structures and where a strong visual connection can be made from interior waiting and lobby areas to exterior plazas and courtyards. It is the intent these areas could be used for not only the benefit of those visiting the hospital, but also for the community.

In the summer of 2014, St. Luke’s Healthy U collaborated with Capital City Public Market and Global Gardens to organize a pop-up produce stand on the hospital lawn. One day a week, a tent was setup offering fresh produce to visitors and the public.

The previous illustration identifies where opportunities for public art and outdoor space is proposed.

10.3 WAYFINDING

This section describes key wayfinding elements around St. Luke’s downtown facility for the public and staff. The present plan is part of the master plan for this project. These elements will be further developed as the project progresses.

Wayfinding – Key Decision Points and Drop-offs

Please refer to the Wayfinding – Key Decision Points and Drop-offs diagram. This wayfinding diagram displays key circulation routes that will be utilized by the public and staff when heading to St. Luke’s campus. Highlighted in this diagram are primary and secondary transportation routes, decision points, drop-off locations, and parking.
When navigating to the St. Luke’s downtown campus, there are five key decision points that the public and staff will encounter, which will provide direction to parking and various drop-offs around the hospital. These decision points are represented as purple circles on the wayfinding diagram.

One key decision point, unique from the others, is located at the intersection of Jefferson Street and Avenue B. At this location, public access is available onto Jefferson Street, but is not available at the ambulance entrance across from Jefferson Street. Appropriate material and signage are needed to properly convey to the public that the ambulance entrance is not a place of public access.

Patient access involves drop-off, parking, or both. The main drop-off locations are marked by black squares and are located at each major department and/or building entrance. Most of the public parking currently exists on the south end of the facility. Additional public parking will be provided on the north end of the facility and below the Children’s Pavilion.

The new parking structure located on the north end of the facility will provide direct access to the outpatient main entrance. Staff and patients can enter/exit the parking garage from 1st Street, and an additional staff entrance will be provided into the garage from 2nd Street. The public parking below the Children’s Pavilion will be accessed from Jefferson Street.

Use of public transportation is another means of accessing the facility. The existing bus stops are depicted on the diagram as blue squares. These bus stop locations are in close proximity to the inpatient and outpatient entrances, MSTI, and Children’s Pavilion. Valley Regional Transit (VRT) noted there are no significant issues with the plan from their perspective and will work with St. Luke’s to determine exact locations to support the master plan once adopted.

Major deliveries and truck traffic will access the loading docks behind St. Luke’s Medical Office Plaza off of 2nd Street. This separation of traffic will minimize blockage of main public access routes and other drop-off locations.

Wayfinding – Signage

Please refer to the Wayfinding – Signage diagram. This diagram shows the location and types of signage that will be used to help the public and staff navigate the hospital facility.

Located near the intersection of Broadway and Warm Springs avenues is an existing St. Luke’s pedestal sign that will remain. This sign is not so much a wayfinding sign, but rather signifies to the public their arrival at the St. Luke’s campus. Beyond this point, wayfinding signs will be strategically placed to guide the public to their destinations.

The types of signs to be used are pedestals and wall-mounted signs. The wayfinding diagram displays examples of these types of signs and appropriate locations for each type.

Pedestal signs are represented by rectangles. A short pedestal, indicated by a green rectangle, directs access to a single entrance and department. A tall pedestal, indicated by a yellow or orange rectangle, directs access to multiple entrances and departments. The difference between the two types of tall pedestals is that one boldly locates the Emergency Department.

Wall-mounted signs are represented by circles. Entrances to the major departments are made noticeable with wall-mounted signage, indicated by a blue circle. The St. Luke’s Children’s Hospital sign is unique to the department and is denoted as a pink circle. Parking entrance signs are indicated by a purple circle. The emergency sign, indicated by a red circle, will be large and back-lit so the public can clearly locate the Emergency Department at all hours.

Near the ambulance entrance, appropriate signage is needed to prevent public access.

10.4 LIGHTING

The downtown facility outdoor lighting system is well developed, and consists of decorative, historic luminaires and poles. The outdoor lighting system will maintain the standard already developed. The poles will consist of straight-fluted shafts 10 to 14 feet in height, colored black, and will feature separate arms for hanging flower baskets and flags. The luminaires will be decorative acorn style to match the existing Holophane Granville model used throughout the facility. The lighting system will be designed to enhance security and allow for safe movement along paths, sidewalks, roadways, and drive entries. Target horizontal illumination levels will be 0.5 foot-candles maintained.
and supporting medical office buildings. St. Luke's Health System. St. Luke's support included new hospitals in the communities of Wood River and Magic Valley were brought into the greater Boise area through Boise and Meridian. Later that decade and into the 2000s, medical office plazas, buildings, and clinics were being constructed to serve the needs of outlying communities. Planned community hospitals and medical office buildings are the face of health care for those communities.

The landscape of St. Luke’s, like health care, is ever changing and continually growing. In the early 1990s, St. Luke's began expanding its services to outlying communities. Planned community hospitals and medical office plazas, buildings, and clinics were being constructed throughout Boise and Meridian. Later that decade and into the 2000s, the communities of Wood River and Magic Valley were brought into St. Luke’s Health System. St. Luke’s support included new hospitals and supporting medical office buildings. Over the past five years, existing hospitals in McCall, Jerome, and Mountain Home joined St. Luke’s. While the existing hospitals don’t necessarily showcase the design elements of St. Luke’s facilities, they are the face of health care for those communities.

Facilities currently at the Boise location include: the hospital, a collection of professional medical office buildings and clinics, sub-terranean and multi-story parking structures, as well as the facility’s central power and distribution plant. Each facility type has different requirements of access/entry for the public and staff, visibility, security, privacy, and service. Along with these requirements, consistent building elements have been established from existing building typologies that will continue as the facility continues to evolve and expand.

11.0 BUILDING DESIGN STANDARDS

The hospital St. Luke’s built in 1927 at the corner of Banock and 1st streets established the precedent for the architectural vocabulary that has characterized St. Luke’s facilities for more than 80 years. Over this era, many St. Luke’s visionaries and their chosen design professionals have continued to develop the aesthetic into today’s recognizable building brand. Although no two buildings are exactly the same, many of the additions and new facilities possess trademark design elements and a common material palette. Regardless of type of care, number of stories, size or scale, all locations and facilities evoke the feeling of “this is a St. Luke’s facility.”

The following discussion identifies common elements and variations indicative of the timeless quality found throughout St. Luke’s Health System’s family of facilities.

11.1 EXISTING TYPOLOGIES

TYPOLOGIES - BUILDINGS

The landscape of St. Luke’s, like health care, is ever changing and continually growing. In the early 1990s, St. Luke’s began expanding its services to outlying communities. Planned community hospitals and medical office plazas, buildings, and clinics were being constructed throughout Boise and Meridian. Later that decade and into the 2000s, the communities of Wood River and Magic Valley were brought into St. Luke’s Health System. St. Luke’s support included new hospitals and supporting medical office buildings. Over the past five years, existing hospitals in McCall, Jerome, and Mountain Home joined St. Luke’s. While the existing hospitals don’t necessarily showcase the design elements of St. Luke’s facilities, they are the face of health care for those communities.

Facilities currently at the Boise location include: the hospital, a collection of professional medical office buildings and clinics, subterranean and multi-story parking structures, as well as the facility’s central power and distribution plant. Each facility type has different requirements of access/entry for the public and staff, visibility, security, privacy, and service. Along with these requirements, consistent building elements have been established from existing building typologies that will continue as the facility continues to evolve and expand.

TYPOLOGIES - BUILDING VOCABULARY AND FEATURES

Typically, St. Luke’s buildings are constructed with a common material palette. The building’s size, scale, style, use, and site will affect the amount of material used. Although strong and iconic is the red brick and its enduring quality, not all identifiable design features will be incorporated into each new facility. However, the design of a new St. Luke’s building will have a material palette, including a few consistent building elements, as the baseline.

Typical design elements include: stepped pediments, stepped parapets with flat roofs, brick banding (coursing arrangements) and relief in the brickwork, inset corners at the building edges, columns and pilasters, patterned window arrangements, ornamental grilles and screens, and transparent lobbies and entrances.

MATERIAL USE

St. Luke’s building palette embodies three primary materials: red brick, bronze anodized aluminum window frames and tinted glazing systems, and grey-white colored exterior insulation finish system (EIFS). Other complementary building materials have been introduced into the palette at different facilities, including stone, colored brick, architectural precast concrete, translucent sandwich panel skylights/roof panels, and ornamental steel. They have been utilized for their effect, appropriateness and durability.

ICONOGRAPHY

The red brick has been, and will continue to be, the signature material symbolizing St. Luke’s buildings. It is the primary and most used material for construction. The arrangement of the brick can be characterized in a simplistic large planar arrangement that incorporates soldier coursing at floor breaks, and window head and sill conditions. It is best utilized at areas of buildings that require little to no transparency and protection from public visibility. Openings are usually oriented vertically (tall and narrow).

Typically, entrances and lobbies maximize the use of window and glass systems for their transparency, but more importantly as a wayfinding element for the public to find the “front door.” In addition, where possible, these systems are utilized along public corridors fronting exterior walls, again to aid as a wayfinding element. Having exposure to natural light is important for patients admitted for extended stay and recovery. Patient rooms capture natural light, but at a smaller scale. Privacy and screening are factors when determining opening sizes and placement.

Exterior insulation finish systems (EIFS) are used as the primary building cap and parapet elements. The lighter contrasting color of the EIFS to the red brick usually draws great attention and adds visual rhythm. The precedent has been to incorporate varying thickness, steps, and reveals into the rigid foam to break long runs while continuing vertical lines from lower design elements at both brick and window systems. St. Luke’s architects use EIFS for its flexibility to create multiple shapes and profiles, efficient cost, and because it is a light, durable building material.
11.2 RECOGNIZED ELEMENTS & IMAGES

GENERAL OVERVIEW OF BUILDING FACADES

The arrangement and order of the St. Luke's building palette often gives the impression of buildings that are predominantly vertical. Although there is a presence of both vertical and horizontal building lines, the balance of differing materials and mass evoke a vertical building. The following examples of building elements and imagery will be described starting from the bottom (base) and finishing at top (roof).

BASE

Bases are generally well articulated on St. Luke's buildings. Examples vary from the field-color brick blend and utilizing a recess, soldier, or corbelled course(s) and often terminate as a recognized design element at the ground level window sill.

Other examples of building materials utilized as a base element are: exposed concrete, EIFS, ground-faced concrete masonry units, accent colored brick veneer, and other stone products.

BODY

The overall body building material is red-brick blend. As previously discussed, it is the iconic material that characterizes St. Luke's facilities. The arrangements are seen as large simplistic planes and are visually vertical. Coursing and relief are predominantly located at window head and sill conditions. Insets are often integrated at columns, pilasters, window openings, and building corners to soften harsh edges.

STEPPING/RELIEF

Stepping and relief occur in both plan and elevation. Brick and EIFS are often inset at building corners, columns/pilasters, and door/window openings to soften edges and create relief.

Reveals (both horizontal and vertical) and varying thickness of EIFS, and recessed and corbelled soldier brick-coursing create relief while at the same time dividing up facades that articulate patterns and repetition.
BANDING

The horizontal banding originated with St. Luke’s first building and has been applied to several buildings in a complementary arrangement. Visually, the strongest presence is noticed when applied as a ground-level base element. Many examples utilize brick or stone coursing arrangements, recessing, corbelling, and face texture that create relief.

Recessed brick creates horizontal bands around the perimeter at St. Luke’s Boise facility.

Recessed brick creates interest at exterior walls at the St. Luke’s Boise facility.

Banding in the brick aligns with adjacent building elements, tying together separate parts of the building.

ENTRANCES

Main entrances for St. Luke’s facilities are extensions of their lobbies and waiting areas, which emphasize transparency as a wayfinding locator for the public. Many times, brick elements are minimized and medium bronze anodized aluminum window frame and tinted glazing systems are the dominant building material.

Main walk-in entrance at St. Luke’s Boise.

Entrance at St. Luke’s Boise that is surrounded by windows.

Entrances are protected from the elements for the public’s safety with building elements in the St. Luke’s architectural vocabulary by the use of projected eyebrows with overlapping drop-off canopies, recessed entry doors, and vestibules.

WINDOWS

Windows are used in various formats to provide transparency, natural light, and for aesthetics.

Glazing is broken up with mullion patterns and EIFS at St. Luke’s Boise.

Large amounts of vertical glazing divided with EIFS at St. Luke’s Boise.

Windows are typically recessed from the face of the building, which breaks up the exterior and adds relief. Windows on St. Luke’s buildings are typically divided by vertical and horizontal window mullions that are aligned with other adjacent elements on the building’s facade. The placement of these mullions creates a unique identifiable grid that helps create another St. Luke’s element.

At entrances and lobbies, transparency is integrated into the design to help patients and visitors easily identify critical points of entry. This is important so patients can quickly find main entrances with minimal confusion. St. Luke’s typically has open, and often two-story, lobbies with large amounts of natural light to provide for an inviting entry for patients and families when entering the hospital facilities. Natural light is also provided at patient rooms as well as other critical patient care areas, as required for healthcare buildings. You will typically see these windows aligned in a vertical format along the exterior of the hospital.

Windows typically tie in with other materials and elements on the building while breaking up the exterior to create complexity, rhythm, and interest.
COLUMNS AND PILASTERS

Columns and pilasters are used to divide large segments of the exterior facade. Breaking up the exterior is a successful way of introducing a pattern to what could be a monolithic exterior wall.

Columns and pilasters are also used to identify key areas, extending above the parapet to help identify a point of entry into the hospital. Elements such as these assist patients and visitors to identify the appropriate points of entry, especially in emergency situations.

FLAT ROOFS AND PARAPETS

St. Luke’s large-scale buildings have flat (low slope) roofs and parapets. Traditionally, the parapets are EIFS of varying thicknesses (relief) with both horizontal and vertical reveals. Parapets usually have a turn-down vertical leg at the building corners. This is a prominent building element at all St. Luke’s facilities. The turn-down leg usually will have multiple horizontal reveals that are equally spaced to the overall vertical dimension. Long dimensions in parapet runs will also be broken with either a step in elevation or relief, as an example, to create visual interest.

The roofs themselves are typically finished with membrane or ballasted roofing. In some cases, when it makes sense, “green” or vegetated roofs have been employed for various purposes at St. Luke’s facilities. Vegetated roofs can reduce peak storm water runoff by up to 50 percent, decrease local heat island effects, and reduce overall heat load on major building systems.

VEGETATED ROOF TO REDUCE RUNOFF AND HEAT ISLAND EFFECTS AT ST. LUKE’S MAGIC VALLEY.

MECHANICAL GRILLES

Mechanical grilles at St. Luke’s are designed into the architecture of the buildings. Color, style, and design are intended to match the existing vocabulary of the building.

The color of the mechanical grilles matches the window mullion color used on St. Luke’s projects. Vertical and horizontal mullions are used to divide the mechanical grilles into smaller segments. The mullions typically align with other building elements such as recessed brick or reveals in EIFS. The mechanical mullions are used in a similar arrangement as the window mullions on St. Luke’s buildings.

STEPS AND PEDIMENT

Easily, this is the strongest and most identifiable feature used at all St. Luke’s facilities. It has been interpreted and modified to a small degree, but visually is the iconic feature of the St. Luke’s brand.

An iconic image of St. Luke’s Boise, which illustrates the stepped pediment.

Mechanical grilles at St. Luke’s Boise match adjacent window color. Grilles are divided by vertical and horizontal mullions that match the vocabulary of the adjacent glazing systems.

Along with blending into the design of the buildings, mechanical grilles are also used to break up space and divide exterior walls into smaller segments. The mechanical grilles are often recessed from the adjacent building face to help further break up the exterior façade.

St. Luke’s has used a few different types of canopies to protect patients and visitors. The most common canopies used are integrated with the design of the buildings. These canopies typically use the brick and EIFS that are common to the St. Luke’s brand of hospitals. Some canopies have introduced the use of copper as another building element to highlight points of entry.

Another type of canopy used on St. Luke’s facilities is a detached canopy. The detached canopies are typically constructed with translucent panels that provide the passage of filtered sunlight into the drop-off area. The structure for these canopies is exposed ornamental steel that is painted to match the existing color palette on the facility. The translucent panels slope away from the vehicles in order to keep water away from patients and visitors.

St. Luke’s uses a variety of canopies, but all canopies use the same vocabulary and style common to the adjacent buildings. The canopies also create enough attention to help patients and visitors easily find the appropriate entries as well as provide a protected drop-off in times of harsh weather.

The integration of ornamental elements into St. Luke’s facility fabric are often seen near public entrances, gathering areas, and approaches. Examples are way-finding markers, bollards, custom lighting, paving patterns, outdoor seating areas, and drop-off canopies. The material palette will often use some, if not all, elements of the St. Luke’s exterior palette: brick, stone and bronze-colored metal. They are often proportioned to the human scale, elegant yet simple, and often are arranged with symbolism of key architectural elements and forms from St. Luke’s buildings.

St. Luke’s Health System successfully implements landscape elements to enhance the aesthetics of its facilities. Landscape features are designed and maintained to provide a link between the built and natural context within which they reside. Beyond streetscapes, previously discussed in section 9.0, St. Luke’s landscape elements combine areas of hard and softscapes for a variety of purposes including beautification, external auto and pedestrian circulation, recreation, and respite.
Typical downtown landscape treatment.

In parallel with serving the previously mentioned functions, an integrated and thoughtful approach to landscape areas can help reduce environmental impacts. For example, landscapes can reduce or eliminate storm water discharges from built improvements, while improving water quality. Landscape plantings, especially trees, improve air quality and mitigate heat islands by reducing or shading impermeable surfaces such as asphalt and concrete. Strategies can include incorporation of permeable paver systems and bio-retention planter areas.

Native and drought-tolerant plantings.

Landscapes can also reduce water use through incorporation of native and drought-tolerant species. Such plantings are used in combination with more traditional turf type landscaping at many of St. Luke’s facilities. Throughout the St. Luke’s Health System, differing climate conditions afford opportunities for a variety of approaches for landscape treatments. Incorporating climate and region-appropriate landscape treatments help conserve water while also helping to reduce operating and maintenance costs.

The environmental benefits of site landscapes are less evident than the obvious aesthetic appeal of well-landscaped sites. But at the numerous St. Luke’s facilities across Idaho that incorporate these landscape elements, the benefits are already being realized.

11.3 SUSTAINABLE BUILDING PRACTICES

One of the most important parts of creating a successful, sustainable facility is the internal elements that are not always visible. St. Luke’s Health System is particularly interested in taking such elements into consideration in order to improve energy efficiency and provide a high quality indoor environment for both staff members and patients.

St. Luke’s Health System pursues efficiency through both design and operational practices. Hospitals and healthcare buildings typically have some of the highest energy intensities of all other building types. Due to the high energy use, utilities can be a substantial operating cost. To mitigate this cost, St. Luke’s designated design and operational staff to pursue efficiency whenever possible. During the design phase at the Magic Valley Regional Medical Center, extensive design efforts resulted in substantial energy savings of over 7 million kilowatt hours, or the amount of electricity it would take to supply 600 average-size homes. Reducing energy use at its facilities not only helps St. Luke’s, but it also helps preserve the health of the environment and its inhabitants.

Beyond saving energy to improve the natural environment, St. Luke’s is also focused on providing a high quality, healthy indoor environment within their facility. In order to provide such environment, designs must be centered on the incorporation of natural light, clean-filtered air, and providing a connection to nature.

The materials used in the facility are selected upon a criteria of durability, ability to increase air quality, and cleanliness to lessen the spread of bacteria. The conservation of energy, incorporation of nature indoors, and meticulous material selection all work cohesively to create an indoor setting that utilizes the positive effects of nature on personal and environmental health.

As previously mentioned in the Landscape Features section a variety of best practice storm water control features have previously been introduced at various St. Luke’s facilities including at the downtown hospital. Planning for future low impact, sustainable storm water development at the downtown facilities will be included in the overall planning process. This process will include, but will not be limited to the following design principles for storm water management.

- Apply conservation design. Working within the context of an urban setting, appropriate building and landscape interactions can be explored to minimize the impacts from development on natural and man-made hydrology.
- Manage rainfall where it originates. Landscape and architectural features should be designed to retain and absorb water onsite, rather than convey it away.
- Design with construction and maintenance in mind. Systems should be evaluated for their proven track record and durability.
- Calculate runoff volume and water quality. Total volumes and quantities should be compared against existing and proposed design solutions.
11.4 BUILDING MASSING & GROUND FLOOR ACTIVATION

Per the City's Conditions of Approval, St. Luke's Health System design team will work to create active and vibrant pedestrian experience throughout the project. Building frontage and facades will follow the requirements within the Boise Downtown Design Standards and Guidelines. Strategies such as façade articulation, open space, public art, and pedestrian seating will be studied as part of the overall design for each project in the master plan. Details shall be considered during the City's Design Review process.

In addition, new parking garages shall be designed to support ground floor activation. Structured parking facilities shall be designed to including architectural character, massing and articulation, building elements and details, building materials, building lighting, and blank wall treatments as described in the Downtown Design Standards. Parking structures shall also provide vehicular entries away from pedestrian corridors emphasizing the pedestrian experience. The following images provide examples of how activation could be achieved as the design for these facilities are considered.

Activation could provide opportunities to develop place making pop-up retail like produce stands or sale of locally produced goods. Ground floor activation could be as temporary or seasonal on weekends when the garage is typically under utilized.

Existing example of ground floor developed retail within a garage at Boise State University.

Example of “green wall” treatment applied to the facade of a garage.

Existing ground floor treatment at the existing Idaho Street Garage demonstrating landscape setbacks incorporated into the garage.

Example of public art as part of a garage structure.

Dissolution of typical garage features like stair and elevator cores to provide visual interest and activation.

Example of ground floor retail opportunity.
12.0 DEVELOPMENT PHASING

St. Luke’s plan to maintain and develop its current facilities in Boise is a significant commitment to be phased over the next decade. Although exact timing of the projects will be somewhat dependent on philanthropic involvement from the community and hospital board approvals, a conceptual phasing sequence is articulated in the following section. For information regarding timing and extents of roadway improvements, see “13.0 Planned Roadway Improvements & Timing.”

The timing of each phase is relative to the issuance of the submission date of this document and denotes potential construction start dates.

Phase 1: Children’s Pavilion
Anticipated Start Date: 6 months – 2 years

Phase 2 activities will include the demolition of the existing central plant, after the completion of the new central plant between 1st and 2nd streets. The new central plant is planned to be integrated into the 3-4 story parking garage facility, and will connect to the existing and expanded hospital via underground utility tunnels, similar to current practice.

The shipping and receiving building is planned at 2nd Street between Jefferson and Bannock streets. It is anticipated it will be a three-story building with underground access into the tunnel system for transfer of materials.

Vacation of Jefferson Street between Avenue B and 1st Street will clear the way for major hospital development that will occur during the next phase.

Phase 2: Central Plant Relocation/Shipping & Receiving
Anticipated Start Date: 1-3 years

Phase 3 includes a 9-10 story inpatient bed tower, with existing expanded diagnostic and treatment facilities located on the first 4-5 floors with two additional floors underground. In addition, a new 6-9 floor medical office building is planned to span 1st Street, linking the new parking garage to the main hospital.

Phase 3: Hospital Development/Outpatient Physician Clinic Building
Anticipated Start Date: 3-5 years

Phase 4: Existing Hospital Renovations
Anticipated Start Date: 5-7 years

The fourth and final major phase of construction planned as part of this master plan will be extensive remodels of the existing hospital and South Tower. It is anticipated this will take many interim logistical phases to complete once the expansion is complete and can be used for temporary swing space. This phase will most likely be confined to interior remodels of the existing buildings and development of a new Children’s Hospital entry to be located adjacent to the existing main entry.

Future Phases:

The planning team has included conceptualized possible locations for future construction as a potential starting point for planning beyond the scope of this current plan. The locations illustrated, size, and uses are all subject to change as future demands are currently unknown.
I.3.0 PLANNED ROADWAY IMPROVEMENTS & TIMING

As noted previously, several roadway segment and intersection locations are anticipated to exhibit poor traffic operations under existing and future traffic conditions without additional capacity enhancements. These impacts can be attributed to both normal traffic growth and the effects of additional St. Luke’s development. Recommended improvements and the timing of these measures is summarized in the following table.

While some roadway segments are expected to exceed LOS thresholds with the proposed improvements, all associated intersections operate below Level C thresholds. These improvements, while currently under ACHD review, achieve a balance of acceptable traffic operations and feasible transportation network enhancements. Improvements are generally limited to traffic signalization and intersection configuration measures. Alternative intersection forms were evaluated at certain locations that merit mitigation improvements. It should be noted that at these locations, other solutions were also found to be workable.

Improvements beyond a conventional signalized intersection may offer reduced vehicular delay and improved operations, but should be considered within the context of the local transportation system. Further review and discussions related to these locations is expected. Additionally, the financial responsibility for construction of these recommended improvements has yet to be determined. All recommended improvements, including Baseline Mitigation and Boise Master Plan elements, and the respective timeframe in which these improvements are needed, are summarized below.

Recommended Improvement Summary

<table>
<thead>
<tr>
<th>Location</th>
<th>Recommended Improvement</th>
<th>Timing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fort Street, 1st Street to 4th Street</td>
<td>WB LT turn lane – 2nd St</td>
<td>Existing or immediate need</td>
</tr>
<tr>
<td>Fort Street and Reserve</td>
<td>Roundabout</td>
<td>Existing or immediate need</td>
</tr>
<tr>
<td>3rd Street, 1st Street to 6th Street</td>
<td>EB and WB LT turn lane accommodations</td>
<td>2024</td>
</tr>
<tr>
<td>Broadway Avenue/Ida B, Front to Warm Springs</td>
<td>MD, LT turn lanes</td>
<td>2035</td>
</tr>
<tr>
<td>Avenue B, Front to 3rd Street</td>
<td>SB Shared RT turn lane</td>
<td>2035</td>
</tr>
<tr>
<td>3rd Street and State Street</td>
<td>MD, LT turn lanes</td>
<td>2035</td>
</tr>
<tr>
<td>2nd Street and Main Street</td>
<td>Traffic signal</td>
<td>2035</td>
</tr>
<tr>
<td>1st Street/Fort Street/State Street</td>
<td>Additional SB LT turn lane and geometry</td>
<td>2035</td>
</tr>
<tr>
<td>Avenue B and Jefferson Street</td>
<td>NB RT turn lane</td>
<td>2035</td>
</tr>
<tr>
<td>Avenue B and Bannock Street</td>
<td>WB LT restoration</td>
<td>2035</td>
</tr>
<tr>
<td>1st Street</td>
<td>Traffic signal</td>
<td>2035</td>
</tr>
<tr>
<td>3rd Street and Robbins Road</td>
<td>Roundabout</td>
<td>2035</td>
</tr>
</tbody>
</table>

St. Luke’s Baseline Mitigation

- **Intersection improvement**
 - Existing or immediate improvement
 - 2024 Improvement
 - 2035 Improvement

Boise Master Plan (2035)

- **Intersection improvement**
 - Existing or immediate improvement
 - 2024 Improvement
 - 2035 Improvement

Additionally, the City of Boise has recommended other improvements for consistency in their master planning effort (Fort Boise Master Plan). The culmination of these projects is illustrated in the St. Luke’s Baseline Mitigation Plan and the Boise Master Plan figures.
I4.0 IMPROVING NEIGHBORHOOD CONNECTIVITY

As illustrated in the body of this document, St. Luke’s Health System is deeply committed to improving the health of the region. To this end, St. Luke’s worked closely with the City of Boise when the City realized the St. Luke’s project could be a catalyst for development of the larger Fort Boise area, and embarked on a master planning effort for the greater area. As part of the City’s Fort Boise Master Plan effort, St. Luke’s is currently partnering with the City of Boise, ACHD, and interested neighborhood stakeholders to envision new growth and diverse development opportunities with improved transportation and bicycle connectivity and accessibility, and enhanced safety.

The area under consideration as part of the Fort Boise Master Plan is bounded on the west roughly by 5th Street, on the east by Ave. B and Reserve Street, the north by Mountain Cove Road and the foothills, and the south by Warm Springs Avenue and Main Street. Throughout St. Luke’s outreach efforts, this area has been identified as an area of significant public concern. If agreement of vision and scope can be reached between the parties, this opportunity for redevelopment could happen concurrently through a Development Agreement with the implementation of this master plan at a significant value to the public. By partnering, the participants can achieve far greater community improvement than each can achieve separately.

Development Participants and Benefits:

City of Boise

• The City can achieve flexibility for future development in the Fort Boise area, improved connectivity and enhanced transportation infrastructure.

Ada County Highway District

• ACHD achieves infrastructure improvements beyond the normal Capital Improvement Program (CIP).

St. Luke’s Health System

• Partnership in the Development Agreement enables St. Luke’s to move forward with the Downtown Capital Improvement Program.

The Development Agreement partnership will deliver the community improved transportation infrastructure at an accelerated schedule and reduced cost as well as an enhanced healthcare delivery system.

Although outside of current development policy, St. Luke’s is actively participating in the planning of enhancements to the roadway network. Improvements above and beyond those noted as St. Luke’s Baseline Mitigation Plan in the Traffic Impact Study are illustrated in the image to the right. Additional improvements noted under this plan include a roundabout at Fort Street and Reserve Street; a roundabout at 3rd Street/Fort Street/Robbins Road; realignment of the north approach at the 1st Street, Fort Street, and State Street intersection; and bicycle network and sidewalk improvements west of Avenue B, adjacent to the hospital.

St. Luke’s/Fort Boise Transportation Plan

Not all potential transportation system improvements are shown on the St. Luke’s/Fort Boise Transportation Plan; there is just too much detail for the purpose of this document. The three-party development agreement will involve an iterative process that allows St. Luke’s, the City and ACHD to develop the engineering and design details for further review in connection with the vehicular, bicycle and pedestrian improvements in and around the St. Luke’s/Fort Boise area. And, as Staff told the Commission, if the three-party development agreement does not proceed as expected, then the City would ask that ACHD not allow vacation of Jefferson. 28

The three-party development agreement (along with improvements to Bannock Street) is clearly a key component of the mitigation and enhancement effort by St. Luke’s and is clearly a key component of Staff’s recommendation to approve the Master Plan. Yes, only one Commissioner raised a single question regarding the development agreement, and there was no Commission deliberation on how the development agreement and the St. Luke’s/Fort Boise planning efforts informed Staff’s recommendation for approval.

Mitigation of Jefferson Closure and Conformance with Blueprint Boise

Staff made its recommendation to the Commission that findings necessary to approve St. Luke’s proposed amendment to Blueprint Boise may be made provided the following City-recommended additions to connectivty are addressed, notably in connection with Bannock Street:

The changes to the plan recommended by the City will adequately mitigate for loss of street connectivity on Jefferson Street by providing alternative connectivity enhancements on Bannock Street as well as on other streets in the vicinity and through a cooperative agreement with St. Luke’s and ACHD will create transportation and pedestrian improvements in the area that go beyond what St. Luke’s would normally be required to provide. (Emphasis added.)

At its February 9, 2015, public hearing, the Commission, especially Commissioner Gillespie, concluded:

With respect to the mitigation that Director Simmons I think worked extremely hard on, again, I think it might be possible to mitigate the effect of closing Jefferson. I think the key to that is the Bannock street corridor. 29 (Emphasis added.)

Commissioner Gillespie went on to encourage stakeholders to work out the complications that the Bannock Street corridor presents. After the Commission’s hearing, St. Luke’s examined all public comments regarding connectivity and Staff’s proposals for how St. Luke’s Master Plan could better implement the goals and policies of Blueprint Boise.
St. Luke’s conducted a focused workshop on March 6, 2015, to discuss the needed to be maintained and/or redesign of Bannock for pedestrian and bicycling will effectively mitigate many of the concerns expressed by the community regarding connectivity and safety. These concepts demonstrate that Bannock is an example of St. Luke’s ability and genuine interest in working with neighbors, experts, and other stakeholders to develop the best solutions to connectivity. This attitude of working cooperatively will continue through the design process of Bannock.

A. Working with Stakeholders

St. Luke’s heard and listened to the concerns of the public and the Commissioner regarding maintaining safe linkages between the East End and Downtown. The overwhelming theme from the Commission’s public hearing was that a more pedestrian and cycling oriented route from the East End to Downtown needed to be maintained and/or created to mitigate the closure of a block of Jefferson Street.

To address these concerns, and in response to Staff recommendations, St. Luke’s conducted a focused workshop on March 6, 2015, to discuss the design of the Bannock Street corridor ("Bannock Design Workshop"). The Bannock Design Workshop was facilitated by a third-party urban planning and design expert, Mr. Brian McCarter of ZGF Architects from Portland, Oregon, with the intended outcome of conducting an open and unbiased review of all of the current demands for this particular section of Bannock Street. In addition, another goal was to develop alternative design concepts intended to address all uses of the Bannock space, while accomplishing three things: (1) increased patient safety; (2) increased public safety; and (3) enhanced public connectivity as part of a broader transportation system.

After reviewing current conditions and current uses along with future demands, the workshop attendees provided perspectives on the best ways to balance all the competing uses of the Bannock space, with the overall need to provide connectivity in the Master Plan. Three design concepts for Bannock were emerged as potential solutions to mitigate the closure of Jefferson Street and improve the overall connectivity of St. Luke’s Master Plan.

As a result of these efforts, St. Luke’s is proposing to modify its Master Plan with these enhancements on the Bannock Street corridor:

• Extend the cycle track from Avenue B to Avenue A along the south side of Bannock to provide a clear route for cyclists through this main vehicle entrance to the hospital. This will identify a specific location for cyclists that will facilitate safe conginging of vehicles, pedestrians, and cyclists;

• Provide visually identifiable pathways for the cyclists in transition zones which serve as visual cues for both pedestrians and cyclists to enhance safe passage for both users;

• Provide "sharrow” demarcation along Avenue A from Bannock Street to Idaho Street allowing for alternative pathways for cyclists. These levels within the Bannock plaza are perceived as a challenge; and

• Provide an enhanced 10-foot wide multi-use path through the Bannock plaza, with visually identifiable yield zones for cyclists at pedestrian crossings; and

• Provide the City a public easement through the Bannock plaza to preserve this corridor as a publicly-accessible space into perpetuity.

The Bannock Design Workshop concepts, while not the full range of potential designs for Bannock, demonstrate that the opening and redesign of Bannock for pedestrian and bicycling will effectively develop bikeway connections that work well for both the "Strong and the Fearless” all the way down the continuum to the "Interested but Concerned” group. The Bannock Design Workshop is an example of St. Luke’s ability and genuine interest in working with neighbors, experts, and other stakeholders to develop the best solutions to connectivity. This attitude of working cooperatively will continue through the design process of Bannock.

B. Diversity within the Cycling Community

It is important to remember that the cycling community is diverse and that understanding their differing needs is critical to designing bike-friendly corridors. The Portland Bureau of Transportation has categorized cyclists and potential cyclists into four distinct riding types: (1) "Interested but Concerned”; (2) "Enthused and Confident” (3) "Strong and the Fearless”; and (4) "non-riders, called the "No Way, No How” group. We believe these groups are also representative of the cycling community in Boise.

The "Strong and the Fearless” group are those bicyclists for whom "riding is a strong part of their identity and they are generally uninfluenced by roadway conditions.” This group would usually have no problem riding on Fort Street or Avenue B during rush hour. This is a small percentage of the overall cycling community.

The "Enthused and Confident” group is composed of those cyclists that enjoy cycling within Boise and who are comfortable sharing the roadway with automotive traffic, but prefer to do so on streets that have been designed to work well for bicycling (streets with bicycle lanes and streets with lower traffic counts). This group is composed of recreational cyclists as well as daily commuters.

The "Interested but Concerned” group is composed of "residents curious about bicycling.” They don’t like the cars speeding down their streets. They get nervous thinking about what would happen to them on a bicycle when a driver runs a red light, or gun their car around them, or pass too closely and too fast. Very few of these people regularly ride bikes (for commuting purposes) — (they may) ride through their neighborhoods to the local park or coffee shop, but who will not venture out onto the arterials, the major commercial and employment destinations they frequent. They would ride if they felt safer on the roadways—if cars were slower and less frequent, and if there were more quiet streets with few cars and paths without any cars at all. A component of this group is families trying to bike with younger family members in a safe manner.

The final group is comprised of the "No Way, No How” folks. This group is not interested in bicycling but they should be considered when designing bicycle and pedestrian connections.

Given this wide variety of cyclists and potential cyclists, St. Luke’s is committed to working with all members of the community to develop connectivity that best supports the "Strong and the Fearless” all the way down the continuum to the "Interested but Concerned.” The workshop attendees provided perspectives on the best solutions to mitigate the closure of Jefferson Street and improve the overall connectivity of St. Luke’s Master Plan.

C. Additional Suggested Improvements for Connectivity within the Master Plan

During the Commission’s hearing, St. Luke’s heard testimony that families and others were reluctant to use Fort Street, Idaho Street and State Street for bicycling and pedestrian activities. The same comments were made at the Bannock Design Workshop. This testimony demonstrates that connectivity for bicycles and pedestrians does not currently exist on Idaho Street, Avenue B, Fort Street and State Street, and that such connectivity will not exist unless the improvements contemplated in the Master Plan are completed. The proposed improvements will establish comfortable co-existence of automobiles, bicycles, and pedestrians that does not currently exist within the St. Luke’s area.

The Bannock Design Workshop also produced certain suggested improvements for connectivity within the Fort Boise area. These suggestions focus on five enhancements and are listed below, and shown on the Connectivity Site Plan:

• Extend two-way cycle track on Avenue B from Jefferson Street north to State Street then west to 2nd Street;

• Enhance intersections to inform cyclists of buffered bike lanes on Idaho and Main Streets.

Again, in response to the input from the Bannock Design Workshop, St. Luke’s is proposing to revise the Master Plan, by extending the cycle track concept to complete a safe walking/two-way cycling path around the St. Luke’s facility. This includes extending the currently proposed cycle track from:

• Jefferson to 2nd Street, along the west side of Avenue B, and the south side of Fort and State Streets;

• State Street to Idaho Street along the east side of 2nd Street; and

• 2nd Street to Avenue B along the north side of Idaho Street.

These proposed changes align with St. Luke’s overall mission to “Improve the health of the people in our region” and align with the City’s mission of “Making Boise the most livable city in the country.”

Connectivity Site Plan

The Jefferson Street closure mitigation activities provided in St. Luke’s application should be viewed as examples and concepts that prove mitigation is surely possible. St. Luke’s believes that the additional cycling and pedestrian improvements outlined in the Master Plan and the Bannock Design Workshop, and as further refined by workshops similar to the Bannock Design Workshop, will ultimately be embraced by the East End community once they become familiar with how they function and the level of safety they provide to the user.

D. Conformance with Blueprint Boise Goals and Policies for Connectivity/Transportation

The overwhelming concern raised in meetings with stakeholders has been the closure of a block of Jefferson Street and the desire to maintain connectivity to Downtown from the East End. But, as stated in the TiS Report “Due to low traffic volumes as documented in the TiS, Jefferson is not technically necessary to carry traffic and pedestrians through the campus area, but it is a component of the Downtown grid that allows for safe and flexible transportation options.” (Emphasis added.)

As indicated in the TiS, St. Luke’s has considered all travel modes in preparing the Master Plan and has worked to provide additional “safe and flexible transportation options” that mitigate the closure of a block of Jefferson Street and conform with Blueprint Boise. St. Luke’s worked extensively with Staff, ACHD, and other stakeholders to ensure that the East End neighborhood—to consider the needs of not only vehicular traffic capacities within the St. Luke’s/Fort Boise areas but also pedestrian and bicycle activity. St. Luke’s explored opportunities to improve connectivity in existing neighborhoods through the implementation of various features such as roundabouts, cycle tracks, multi-use paths, significant addition of bicycle facility striping (e.g., sharrows, lanes, green boxes, etc.), micro-paths, and the redesign of Bannock, all in an effort to meet the goal of an interconnected network of complete streets.

The Idaho Street renderings below are an example of how connectivity for multiple modes of travel is improved with the Master Plan. Currently, Idaho Street has two travel lanes, no bus lane, no bike lanes and parking on both sides of the street. This is...
clearly not a pedestrian- or cyclist-oriented environment. Under the Master Plan, Idaho Street would retain two travel lanes, add a bus lane, add sharrowes, and incorporate a cycle track into the transportation system. These proposed improvements are exactly the improvements to connectivity contemplated and encouraged by Blueprint Boise.38

Connectivity on Avenue B and Fort Street is also significantly enhanced with the proposed Master Plan. As with Idaho Street, the Avenue B renderings below are an example of how connectivity for multiple modes of travel is improved with the Master Plan. Currently, Avenue B has four travel lanes and no bike lanes. Again this is clearly not a pedestrian- or cyclist-oriented environment. Under the Master Plan, Avenue B would retain four travel lanes, add a bike lane, and incorporate a cycle track into the transportation system. Pedestrian comfort is increased by the addition of the 10-foot cycle track buffering the sidewalk from the travel lane. These proposed improvements are markedly better than the existing transportation network in the St. Luke’s planning area and further the goals of Blueprint Boise.

E. Pedestrian Comfort

The Master Plan enhances the pedestrian experience and is in conformance with Blueprint Boise.39 As previously discussed, the reconfiguration of Bannock will allow pedestrians to move easily between Downtown and the East End. As stated by the Commission this is “key” to the closure of a block of Jefferson Street.40 In addition, there are multipath and micro-path systems provided for as shown on the Connectivity Site Plan shown earlier.41 These proposed improvements connect destinations with new pedestrian facilities and encourage walking for a wide variety of trips by adding sidewalk connections and restoring damaged sidewalks.42

The completion of the cycle track on Fort Street, State Street, Idaho Street and Avenue B will work to minimize pedestrian conflict by providing buffers between the sidewalk, bicycling and automobile traffic.43 One of the common concerns voiced during the public hearing was about safety on Fort Street. The Master Plan has been designed to protect the most vulnerable street users by maximizing pedestrian safety and comfort in the design of pedestrian crossings.44
F. Bicycle Network

The Master Plan’s connectivity elements for bicycles are truly innovative. The bicycle facilities will expand the designated network of bicycle lanes and routes connecting the East End to Downtown (and beyond), and will advance the bicycle network goals and policies of Blueprint Boise.40 These proposed connectivity elements are improvements to the existing bicycle network, and their impacts to cycling safety will be enjoyed by a full range of users within the St. Luke’s planning area as part of their daily commute. As previously discussed, the cycling community is diverse; improvements enjoyed by some groups, for example, the “Strong and the Fearless,” may be avoided by others, such as the “Interested but Concerned” cyclists. Given this dynamic, St. Luke’s has designed for the full spectrum of cycling user groups. It is anticipated that the creation of these improvements will facilitate and encourage the use of bicycles for transportation and recreation on streets that (at least according to public testimony) are considered too dangerous for the casual rider to enjoy.

G. Education of Users

St. Luke’s understands that some of the elements for pedestrian and cycling connectivity within the Master Plan are new to the Boise community and, as such, St. Luke’s is committed to using its resources to help educate users on how to enjoy these amenities. In that regard, St. Luke’s will work with the cycling community, local governments and stakeholders to help formulate an education plan and materials for the general public and St. Luke’s employees that cover, for example: how to interpret visual cues; how to safely use the cycle track facilities; how pedestrians, cyclists and automobiles can safely interact within shared spaces; how to enter and exit a roundabout; and other concerns that may develop as the ultimate design of the cycling and pedestrian improvements is finalized. Preventive education, care and safety are exactly in line with St. Luke’s mission, vision and values.

See Blueprint Boise Goal CC7: Enhance pedestrian connectivity and comfort. 41 See Blueprint Boise Goal DT-C1: Developing a robust, multimodal transportation system in Downtown, with an emphasis on transit, bicycle, and pedestrian circulation and safety.

40 City of Boise, Planning & Zoning Commission Meeting Minutes, Page 74.
41 See Blueprint Boise Goal CC7: Enhance pedestrian connectivity and comfort.
42 See Blueprint Boise Policy DT-C1.5: (a) Create a network of designated bicycle lanes and routes in Downtown to encourage walking as a transportation mode and as an enjoyable part of the Downtown experience. (b) Continue to work with the DBA to create attractive and lively streets and explore potential partnerships with local businesses to promote walking in downtown. (c) Develop a comprehensive way-finding system for Downtown featuring pedestrian scale signage to mark walking routes and show direction, distance/time, and access to points of interest, community services, public buildings, transit, trails and parks, and major activity centers. (d) Promote installation and evaluation of enhanced pedestrian countdown signals, crosswalk markings, leading pedestrian intervals, expanded audible pedestrian signal program, installing new accessible pedestrian pushbuttons, increasing pedestrian walking times to cross signalized intersections, and implementing and evaluating pedestrian scramble phases which enable pedestrians to cross at a signalized intersection in all directions at the same time while drivers are stopped.
43 See Blueprint Boise Policy DT-C3.6: Enhance the pedestrian system that were identified through the ACHD Pedestrian – Bicycle Transition Plan.
44 See Blueprint Boise Policy DT-C2.6: Connections to Major Activity Centers: Enhance pedestrian connectivity and comfort.
45 See, e.g., Blueprint Boise Goal DT-C1: Developing a robust, multimodal transportation system in Downtown, with an emphasis on transit, bicycle, and pedestrian circulation and safety.

See, e.g., Blueprint Boise Goal DT-C1: Developing a robust, multimodal transportation system in Downtown, with an emphasis on transit, bicycle, and pedestrian circulation and safety.

See, e.g., Blueprint Boise Goal DT-C1: Developing a robust, multimodal transportation system in Downtown, with an emphasis on transit, bicycle, and pedestrian circulation and safety.
15.0 ADMINISTRATIVE REQUIREMENTS

Pursuant to the Conditions of Approval, the following administrative requirements have been included to further guide future processes.

1. The St. Luke’s Health Facilities Master Plan as amended by the March 2015 Supplemental Narrative is the approved Plan, with the following additional modifications:

a. The Bannock Corridor between Avenue B and I 51 Street shall be preserved for public access by a 28-foot wide easement within which no further building construction is allowed and shall include a 10-foot dual use pathway as depicted in the Supplemental Narrative, dated March 2015, that is open to the public and cyclists. The corridor may also be designed to allow automobile access if deemed appropriate by the City of Boise. Final decisions on design will emerge through a series of meetings and planning sessions as described in condition 2.d. The easement shall be as approved by the Boise City Attorney and shall be maintained by St. Luke’s.

b. Transit stops intended to serve a future fixed line downtown circulator shall be identified at appropriate locations on Main and I daho Streets between 2nd Street and Avenue B.

c. Bicycle lane facilities on Idaho and Main Streets shall be described and depicted in the Master Plan as a buffered or protected lane design.

d. The Design Standards in the master plan shall be modified to describe a requirement for the outer edges of new buildings on the campus perimeter to create a compatible interface with adjacent uses through upper story setbacks, additional modulation and/or enhanced landscaping and ground level setbacks.

e. St. Luke’s shall work with Boise Urban Forestry and PDS to design the cycle track and other facilities in a manner that preserves existing mature trees and vegetation in the public right-of-way around the campus perimeter, particularly on 2nd Street where large street trees exist. Building facade modulation, cycle track width or alignment and street sections may be modified on those frontages in return for setbacks that preserve mature trees. I trees are lost, replacement trees shall be Class 3 or similar.

f. St. Luke’s shall support ground floor activation on any new parking garages and shall depict that activation in conceptual designs and in the narrative of the master plan.

2. Administrative Requirements:

a. Any request by St. Luke’s for expanded HS (Health Services) zoning consistent with the Master Plan, shall be accompanied by a Land Use Map amendment application for the Public/Quasi-Pub lic Land Use designation to match the boundaries of the rezone.

b. Air quality permitting for the Central Plant shall be successfully obtained and documented to the City prior to submittal of a building permit.

c. All mitigation/enhancement for roads and pathways (excluding the Broadway intersection) as required in the TIS, Master Plan and proposed Development Agreement, shall be installed and in place prior to the physical closure of Jefferson Street. Construction which does not affect temporary or permanent closure of Jefferson Street such as the central plant, shipping and receiving, relocation of historically interesting homes and remodel of existing facilities may be permitted prior to mitigation. Further variations in regard to this condition may only be permitted subject to City Council review and authorization.

d. Prior to any construction other than the Children’s Pavilion, the City of Boise and St. Luke’s will schedule an ongoing series of workshops to continue discussions and planning for integrating mixed uses in and around the campus.

e. If any required mitigation measure is determined to be infeasible to construct or requires a different design, the St. Luke’s Master Plan shall be returned to the City Council for further review and potential amendment.

f. St. Luke’s shall enter into a three-party development agreement with the City of Boise and ACHD for the expedited design and construction of roadway and pedestrian improvements around the St. Luke’s Campus as described in the Master Plan and the Fort Boise Concept Plan. Responsibilities for the three parties shall at minimum include the following: i) Boise City to facilitate redesign of the Fort Boise sports fields to accommodate a roundabout intersection at Avenue B and Reserve Street; ii) ACHD to move the Broadway intersection design and construction forward in the CIP; iii) St. Luke’s to provide design assistance for all roadway mitigation (other than the Broadway intersection) including roundabouts at Reserve and 3nl/Robbins Street and construct the improvements; iv) ACHD to enter into reimbursement agreement with St. Luke’s for non-CIP improvements funded by St. Luke’s; and v) all three parties to share in a public process for refinement of roadway and pathway mitigation designs.

g. St. Luke’s shall work with the affected neighbors, the City of Boise and other interested parties to develop a Health District Master Plan that includes the properties in the vicinity that St Luke’s owns or has an interest in and other properties in the area that express an interest in being included in the plan. The plan shall identify St. Luke’s plans for existing properties and opportunities and goals to introduce health district supportive uses such as senior, affordable and market rate housing, retail uses that serve neighbors, the city as a whole, and St Luke’s visitors and employees, office uses and other appropriate land uses to achieve an appropriate mix of uses for a health district on vacant parcels or lands suitable for redevelopment.

APPENDIX
The documents attached as part of this appendix are included for additional relevant detail and are referenced in the appropriate sections of the greater document. Additional materials provided include:

TRAFFIC IMPACT STUDY
AVENUE B LANE REDUCTION TRAFFIC OPERATIONS REVIEW
PARKING ASSESSMENT
HISTORICAL ASSESSMENT
LANDSCAPE ASSESSMENT